Integration of Federated Learning and Blockchain in Healthcare: A Tutorial
- URL: http://arxiv.org/abs/2404.10092v1
- Date: Mon, 15 Apr 2024 19:00:09 GMT
- Title: Integration of Federated Learning and Blockchain in Healthcare: A Tutorial
- Authors: Yahya Shahsavari, Oussama A. Dambri, Yaser Baseri, Abdelhakim Senhaji Hafid, Dimitrios Makrakis,
- Abstract summary: This tutorial explores FL and BC integration, offering a secure and privacy-preserving approach to healthcare analytics.
FL enables decentralized model training on local devices at healthcare institutions, keeping patient data localized.
BC, with its tamper-proof ledger and smart contracts, provides a robust framework for secure collaborative learning in FL.
- Score: 0.5592394503914488
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wearable devices and medical sensors revolutionize health monitoring, raising concerns about data privacy in ML for healthcare. This tutorial explores FL and BC integration, offering a secure and privacy-preserving approach to healthcare analytics. FL enables decentralized model training on local devices at healthcare institutions, keeping patient data localized. This facilitates collaborative model development without compromising privacy. However, FL introduces vulnerabilities. BC, with its tamper-proof ledger and smart contracts, provides a robust framework for secure collaborative learning in FL. After presenting a taxonomy for the various types of data used in ML in medical applications, and a concise review of ML techniques for healthcare use cases, this tutorial explores three integration architectures for balancing decentralization, scalability, and reliability in healthcare data. Furthermore, it investigates how BCFL enhances data security and collaboration in disease prediction, medical image analysis, patient monitoring, and drug discovery. By providing a tutorial on FL, blockchain, and their integration, along with a review of BCFL applications, this paper serves as a valuable resource for researchers and practitioners seeking to leverage these technologies for secure and privacy-preserving healthcare ML. It aims to accelerate advancements in secure and collaborative healthcare analytics, ultimately improving patient outcomes.
Related papers
- Advances in Privacy Preserving Federated Learning to Realize a Truly Learning Healthcare System [0.2748450182087935]
The concept of a learning healthcare system (LHS) envisions a self-improving network where multimodal data from patient care are continuously analyzed to enhance future healthcare outcomes.
Privacy-Preserving Federated Learning (PPFL) is a transformative and promising approach that has the potential to address these challenges.
This paper proposes a vision for integrating PPFL into the healthcare ecosystem to achieve a truly LHS as defined by the Institute of Medicine (IOM) Roundtable.
arXiv Detail & Related papers (2024-09-29T20:02:40Z) - Federated Learning in Healthcare: Model Misconducts, Security, Challenges, Applications, and Future Research Directions -- A Systematic Review [2.710010611878837]
Federated Learning (FL) enables multiple healthcare institutions to collaboratively learn from decentralized data without sharing it.
FL's scope in healthcare covers areas such as disease prediction, treatment customization, and clinical trial research.
implementing FL poses challenges, including model convergence in non-IID data environments, communication overhead, and managing multi-institutional collaborations.
arXiv Detail & Related papers (2024-05-22T16:59:50Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Multimodal Federated Learning in Healthcare: a Review [5.983768682145731]
Federated Learning (FL) provides a decentralized mechanism where data need not be consolidated.
This paper outlines the current state-of-the-art approaches to Multimodal Federated Learning (MMFL) within the healthcare domain.
It aims to bridge the gap between cutting-edge AI technology and the imperative need for patient data privacy in healthcare applications.
arXiv Detail & Related papers (2023-10-14T19:43:06Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Closing the Generalization Gap of Cross-silo Federated Medical Image
Segmentation [66.44449514373746]
Cross-silo federated learning (FL) has attracted much attention in medical imaging analysis with deep learning in recent years.
There can be a gap between the model trained from FL and one from centralized training.
We propose a novel training framework FedSM to avoid client issue and successfully close the drift gap.
arXiv Detail & Related papers (2022-03-18T19:50:07Z) - Federated Learning for Privacy Preservation in Smart Healthcare Systems:
A Comprehensive Survey [6.824747267214373]
We present the role of FL in IoMT networks for privacy preservation.
We introduce some advanced FL architectures incorporating deep reinforcement learning (DRL), digital twin, and generative adversarial networks (GANs) for detecting privacy threats.
arXiv Detail & Related papers (2022-03-18T02:32:05Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.