論文の概要: Using Long Short-term Memory (LSTM) to merge precipitation data over mountainous area in Sierra Nevada
- arxiv url: http://arxiv.org/abs/2404.10135v2
- Date: Fri, 19 Apr 2024 22:44:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:37:54.749669
- Title: Using Long Short-term Memory (LSTM) to merge precipitation data over mountainous area in Sierra Nevada
- Title(参考訳): 長短期記憶(LSTM)を用いたシエラネバダの山岳地域の降水量データの統合
- Authors: Yihan Wang, Lujun Zhang,
- Abstract要約: 降水量計、降水レーダ、衛星ベースの降水センサーといった3つの広く使われている降水量測定手法は、複雑な領域で信頼できる降水生成物を生成するために独自の利点と欠点を持っている。
検出エラーの確率を低減し、データの信頼性を向上させる方法の1つは、降水データマージである。
本研究では,Long Short-term Memory (LSTM) という深層学習技術を用いて,レーダーと衛星を用いたグローバル降水量測定(GPM)を時間スケールで統合した。
- 参考スコア(独自算出の注目度): 12.729339328566542
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Obtaining reliable precipitation estimation with high resolutions in time and space is of great importance to hydrological studies. However, accurately estimating precipitation is a challenging task over high mountainous complex terrain. The three widely used precipitation measurement approaches, namely rainfall gauge, precipitation radars, and satellite-based precipitation sensors, have their own pros and cons in producing reliable precipitation products over complex areas. One way to decrease the detection error probability and improve data reliability is precipitation data merging. With the rapid advancements in computational capabilities and the escalating volume and diversity of earth observational data, Deep Learning (DL) models have gained considerable attention in geoscience. In this study, a deep learning technique, namely Long Short-term Memory (LSTM), was employed to merge a radar-based and a satellite-based Global Precipitation Measurement (GPM) precipitation product Integrated Multi-Satellite Retrievals for GPM (IMERG) precipitation product at hourly scale. The merged results are compared with the widely used reanalysis precipitation product, Multi-Radar Multi-Sensor (MRMS), and assessed against gauge observational data from the California Data Exchange Center (CDEC). The findings indicated that the LSTM-based merged precipitation notably underestimated gauge observations and, at times, failed to provide meaningful estimates, showing predominantly near-zero values. Relying solely on individual Quantitative Precipitation Estimates (QPEs) without additional meteorological input proved insufficient for generating reliable merged QPE. However, the merged results effectively captured the temporal trends of the observations, outperforming MRMS in this aspect. This suggested that incorporating bias correction techniques could potentially enhance the accuracy of the merged product.
- Abstract(参考訳): 時間と空間の高分解能で信頼できる降水推定を行うことは、水文学研究において非常に重要である。
しかし、正確な降水量の推定は山岳複雑な地形において難しい課題である。
降水量計、降水レーダ、衛星ベースの降水センサーといった3つの広く使われている降水量測定手法は、複雑な領域で信頼できる降水生成物を生成するために独自の利点と欠点を持っている。
検出エラーの確率を低減し、データの信頼性を向上させる方法の1つは、降水データマージである。
計算能力の急速な進歩と地球観測データの増大と多様性により、深層学習(DL)モデルは地球科学において大きな注目を集めている。
本研究では,Long Short-term Memory (LSTM) と呼ばれる深層学習技術を用いて,レーダーと衛星を用いたグローバル降水量測定 (GPM) 降水生成物の統合マルチサテライト検索を時間スケールで行う。
その結果,Multi-Radar Multi-Sensor (MRMS) と比較し,カリフォルニアデータ交換センター (CDEC) の観測データと比較した。
その結果、LSTMをベースとした統合降水量は、特に過小評価されたゲージ観測と、ほぼゼロに近い値を示す有意義な推定値の提供に失敗したことが示唆された。
個別の量的降水推定値(QPEs)にのみ頼って追加の気象入力がなければ、信頼できる統合QPEを生成するには不十分であることが判明した。
しかし, 統合結果は観測の時間的傾向を効果的に捉え, この点においてMRMSよりも優れていた。
このことは、バイアス補正技術を組み込むことで、統合された製品の精度が向上する可能性があることを示唆している。
関連論文リスト
- GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
海岸帯水層への海水侵入は地下水資源に重大な脅威をもたらす。
ディープラーニングに基づく新しいサロゲートフレームワークGeoFUSEを開発した。
ワシントン州のビーバークリーク潮流-河床平原系の2次元断面にGeoFUSEを適用した。
論文 参考訳(メタデータ) (2024-10-26T08:10:32Z) - Generative Precipitation Downscaling using Score-based Diffusion with Wasserstein Regularization [19.32044524311079]
地域リスクと降水科学を理解するために、長期記録と高解像度の製品が発掘されることがある。
本稿では,世界規模で利用可能なゲージベース降水生成物をダウンスケールする新しい生成拡散モデルを提案する。
We show that WassDiff has better reconstruction accuracy and bias scores than conventional score-based diffusion model。
論文 参考訳(メタデータ) (2024-10-01T04:12:40Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
本稿では,メソスケール降水分布と小規模パターンの予測を分離するために,決定的かつ確率的な部分からなるカスケードフレームワークCasCastを提案する。
CasCastは地域の極端降水量計のベースライン(+91.8%)をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-06T08:30:47Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Unleashing the Power of Dynamic Mode Decomposition and Deep Learning for
Rainfall Prediction in North-East India [0.27488316163114823]
本研究では,DMD(Dynamic Mode Decomposition)とLSTM(Long Short-Term Memory)という2つのデータ駆動手法を用いた降雨予測手法について検討した。
複数の気象観測所から得られた過去の降雨データを用いて,将来の降雨パターンを予測するためのモデルを訓練し,検証した。
以上の結果から,インド北東部地域の降雨予測精度は,データ駆動手法により著しく向上することが示唆された。
論文 参考訳(メタデータ) (2023-09-17T17:58:06Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Rain regime segmentation of Sentinel-1 observation learning from NEXRAD
collocations with Convolution Neural Networks [0.16067645574373132]
NOAAのNext-Generation Radar (NEXRAD)のような地上の気象レーダーは、降雨の反射率と降雨量の推定を提供する。
本稿では,降雨状況の観点から,SAR観測を3段階に区分する深層学習手法を提案する。
我々は、コロケーションされたSentinel-1/NEXRADデータセットでトレーニングされた畳み込みニューラルネットワークが、最先端のフィルタリング方式よりも明らかに優れていることを実証した。
論文 参考訳(メタデータ) (2022-07-15T08:05:41Z) - Nowcasting-Nets: Deep Neural Network Structures for Precipitation
Nowcasting Using IMERG [1.9860735109145415]
リカレントと畳み込み型ディープニューラルネットワーク構造を用いて、降水流の課題に対処する。
GPM (Global Precipitation Measurement, GPM) 統合マルチサテライトE(Multi-SatellitE Retrievals) を用いて、米国東部大陸の降水量データ(IMERG)を用いて、合計5つのモデルを訓練した。
また, 予測時間を最大1.5時間, フィードバックループアプローチを用いて4.5時間まで延長できるモデルについても検討した。
論文 参考訳(メタデータ) (2021-08-16T02:55:32Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。