Towards a Novel Perspective on Adversarial Examples Driven by Frequency
- URL: http://arxiv.org/abs/2404.10202v1
- Date: Tue, 16 Apr 2024 00:58:46 GMT
- Title: Towards a Novel Perspective on Adversarial Examples Driven by Frequency
- Authors: Zhun Zhang, Yi Zeng, Qihe Liu, Shijie Zhou,
- Abstract summary: We propose a black-box adversarial attack algorithm based on combining different frequency bands.
Experiments conducted on multiple datasets and models demonstrate that combining low-frequency bands and high-frequency components of low-frequency bands can significantly enhance attack efficiency.
- Score: 7.846634028066389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing our understanding of adversarial examples is crucial for the secure application of machine learning models in real-world scenarios. A prevalent method for analyzing adversarial examples is through a frequency-based approach. However, existing research indicates that attacks designed to exploit low-frequency or high-frequency information can enhance attack performance, leading to an unclear relationship between adversarial perturbations and different frequency components. In this paper, we seek to demystify this relationship by exploring the characteristics of adversarial perturbations within the frequency domain. We employ wavelet packet decomposition for detailed frequency analysis of adversarial examples and conduct statistical examinations across various frequency bands. Intriguingly, our findings indicate that significant adversarial perturbations are present within the high-frequency components of low-frequency bands. Drawing on this insight, we propose a black-box adversarial attack algorithm based on combining different frequency bands. Experiments conducted on multiple datasets and models demonstrate that combining low-frequency bands and high-frequency components of low-frequency bands can significantly enhance attack efficiency. The average attack success rate reaches 99\%, surpassing attacks that utilize a single frequency segment. Additionally, we introduce the normalized disturbance visibility index as a solution to the limitations of $L_2$ norm in assessing continuous and discrete perturbations.
Related papers
- Low-Frequency Black-Box Backdoor Attack via Evolutionary Algorithm [12.711880028935315]
convolutional neural networks (CNNs) have achieved success in computer vision tasks, but are vulnerable to backdoor attacks.
We propose a robust low-frequency black-box backdoor attack (LFBA), which minimally perturbs low-frequency components of frequency spectrum.
Experiments on real-world datasets verify the effectiveness and robustness of LFBA against image processing operations and the state-of-the-art backdoor defenses.
arXiv Detail & Related papers (2024-02-23T23:36:36Z) - FS-BAND: A Frequency-Sensitive Banding Detector [55.59101150019851]
Banding artifact, as known as staircase-like contour, is a common quality annoyance that happens in compression, transmission, etc.
We propose a no-reference banding detection model to capture and evaluate banding artifacts, called the Frequency-Sensitive BANding Detector (FS-BAND)
Experimental results show that the proposed FS-BAND method outperforms state-of-the-art image quality assessment (IQA) approaches with higher accuracy in banding classification task.
arXiv Detail & Related papers (2023-11-30T03:20:42Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
arXiv Detail & Related papers (2023-09-07T12:02:00Z) - Towards Building More Robust Models with Frequency Bias [8.510441741759758]
This paper presents a plug-and-play module that adaptively reconfigures the low- and high-frequency components of intermediate feature representations.
Empirical studies show that our proposed module can be easily incorporated into any adversarial training framework.
arXiv Detail & Related papers (2023-07-19T05:46:56Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - How Does Frequency Bias Affect the Robustness of Neural Image
Classifiers against Common Corruption and Adversarial Perturbations? [27.865987936475797]
Recent studies have shown that data augmentation can result in model over-relying on features in the low-frequency domain.
We propose Jacobian frequency regularization for models' Jacobians to have a larger ratio of low-frequency components.
Our approach elucidates a more direct connection between the frequency bias and robustness of deep learning models.
arXiv Detail & Related papers (2022-05-09T20:09:31Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - A Frequency Perspective of Adversarial Robustness [72.48178241090149]
We present a frequency-based understanding of adversarial examples, supported by theoretical and empirical findings.
Our analysis shows that adversarial examples are neither in high-frequency nor in low-frequency components, but are simply dataset dependent.
We propose a frequency-based explanation for the commonly observed accuracy vs. robustness trade-off.
arXiv Detail & Related papers (2021-10-26T19:12:34Z) - WaveTransform: Crafting Adversarial Examples via Input Decomposition [69.01794414018603]
We introduce WaveTransform', that creates adversarial noise corresponding to low-frequency and high-frequency subbands, separately (or in combination)
Experiments show that the proposed attack is effective against the defense algorithm and is also transferable across CNNs.
arXiv Detail & Related papers (2020-10-29T17:16:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.