How adversarial attacks can disrupt seemingly stable accurate classifiers
- URL: http://arxiv.org/abs/2309.03665v2
- Date: Mon, 9 Sep 2024 09:34:36 GMT
- Title: How adversarial attacks can disrupt seemingly stable accurate classifiers
- Authors: Oliver J. Sutton, Qinghua Zhou, Ivan Y. Tyukin, Alexander N. Gorban, Alexander Bastounis, Desmond J. Higham,
- Abstract summary: Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data.
Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data.
We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability.
- Score: 76.95145661711514
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Adversarial attacks dramatically change the output of an otherwise accurate learning system using a seemingly inconsequential modification to a piece of input data. Paradoxically, empirical evidence indicates that even systems which are robust to large random perturbations of the input data remain susceptible to small, easily constructed, adversarial perturbations of their inputs. Here, we show that this may be seen as a fundamental feature of classifiers working with high dimensional input data. We introduce a simple generic and generalisable framework for which key behaviours observed in practical systems arise with high probability -- notably the simultaneous susceptibility of the (otherwise accurate) model to easily constructed adversarial attacks, and robustness to random perturbations of the input data. We confirm that the same phenomena are directly observed in practical neural networks trained on standard image classification problems, where even large additive random noise fails to trigger the adversarial instability of the network. A surprising takeaway is that even small margins separating a classifier's decision surface from training and testing data can hide adversarial susceptibility from being detected using randomly sampled perturbations. Counterintuitively, using additive noise during training or testing is therefore inefficient for eradicating or detecting adversarial examples, and more demanding adversarial training is required.
Related papers
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
We propose a data-agnostic adversarial detection framework, which induces different responses between normal and adversarial samples to UAPs.
Experimental results show that our method achieves competitive detection performance on various text classification tasks.
arXiv Detail & Related papers (2023-06-27T02:54:07Z) - Adversarial Noises Are Linearly Separable for (Nearly) Random Neural
Networks [46.13404040937189]
Adversarial examples, which are usually generated for specific inputs with a specific model, are ubiquitous for neural networks.
In this paper we unveil a surprising property of adversarial noises when they are put together, i.e., adversarial noises crafted by one-step methods are linearly separable if equipped with the corresponding labels.
arXiv Detail & Related papers (2022-06-09T07:26:46Z) - Why adversarial training can hurt robust accuracy [7.906608953906889]
adversarial training helps when enough data is available, it may hurt robust generalization in the small sample size regime.
Our proof provides explanatory insights that may also transfer to feature learning models.
arXiv Detail & Related papers (2022-03-03T20:41:38Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
We propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted.
The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data.
Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets.
arXiv Detail & Related papers (2022-02-28T18:50:10Z) - Classification and Adversarial examples in an Overparameterized Linear
Model: A Signal Processing Perspective [10.515544361834241]
State-of-the-art deep learning classifiers are highly susceptible to infinitesmal adversarial perturbations.
We find that the learned model is susceptible to adversaries in an intermediate regime where classification generalizes but regression does not.
Despite the adversarial susceptibility, we find that classification with these features can be easier than the more commonly studied "independent feature" models.
arXiv Detail & Related papers (2021-09-27T17:35:42Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.