Demonstration of DB-GPT: Next Generation Data Interaction System Empowered by Large Language Models
- URL: http://arxiv.org/abs/2404.10209v3
- Date: Wed, 24 Apr 2024 23:50:13 GMT
- Title: Demonstration of DB-GPT: Next Generation Data Interaction System Empowered by Large Language Models
- Authors: Siqiao Xue, Danrui Qi, Caigao Jiang, Wenhui Shi, Fangyin Cheng, Keting Chen, Hongjun Yang, Zhiping Zhang, Jianshan He, Hongyang Zhang, Ganglin Wei, Wang Zhao, Fan Zhou, Hong Yi, Shaodong Liu, Hongjun Yang, Faqiang Chen,
- Abstract summary: We present DB-GPT, a revolutionary and product-ready Python library that integrates large language models into traditional data interaction tasks.
DB-GPT is designed to understand data interaction tasks described by natural language and provide context-aware responses powered by LLMs.
The Service-oriented Multi-model Management Framework (SMMF) ensures data privacy and security, enabling users to employ DB-GPT with private LLMs.
- Score: 15.694402144885702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent breakthroughs in large language models (LLMs) are positioned to transition many areas of software. The technologies of interacting with data particularly have an important entanglement with LLMs as efficient and intuitive data interactions are paramount. In this paper, we present DB-GPT, a revolutionary and product-ready Python library that integrates LLMs into traditional data interaction tasks to enhance user experience and accessibility. DB-GPT is designed to understand data interaction tasks described by natural language and provide context-aware responses powered by LLMs, making it an indispensable tool for users ranging from novice to expert. Its system design supports deployment across local, distributed, and cloud environments. Beyond handling basic data interaction tasks like Text-to-SQL with LLMs, it can handle complex tasks like generative data analysis through a Multi-Agents framework and the Agentic Workflow Expression Language (AWEL). The Service-oriented Multi-model Management Framework (SMMF) ensures data privacy and security, enabling users to employ DB-GPT with private LLMs. Additionally, DB-GPT offers a series of product-ready features designed to enable users to integrate DB-GPT within their product environments easily. The code of DB-GPT is available at Github(https://github.com/eosphoros-ai/DB-GPT) which already has over 10.7k stars. Please install DB-GPT for your own usage with the instructions(https://github.com/eosphoros-ai/DB-GPT#install) and watch a 5-minute introduction video on Youtube(https://youtu.be/n_8RI1ENyl4) to further investigate DB-GPT.
Related papers
- TransitGPT: A Generative AI-based framework for interacting with GTFS data using Large Language Models [2.3951780950929678]
TransitGPT works by guiding LLMs to generate Python code that extracts and manipulates GTFS data relevant to a query.
It can accomplish a wide range of tasks, including data retrieval, calculations, and interactive visualizations, without requiring users to have extensive knowledge of GTFS or programming.
arXiv Detail & Related papers (2024-12-07T00:35:41Z) - Retrieval-Augmented Personalization for Multimodal Large Language Models [53.304699445700926]
We introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization.
RAP allows real-time concept editing via updating the external database.
RAP-MLLMs can generalize to infinite visual concepts without additional finetuning.
arXiv Detail & Related papers (2024-10-17T09:10:26Z) - Text2SQL is Not Enough: Unifying AI and Databases with TAG [47.45480855418987]
Table-Augmented Generation (TAG) is a paradigm for answering natural language questions over databases.
We develop benchmarks to study the TAG problem and find that standard methods answer no more than 20% of queries correctly.
arXiv Detail & Related papers (2024-08-27T00:50:14Z) - Relational Database Augmented Large Language Model [59.38841050766026]
Large language models (LLMs) excel in many natural language processing (NLP) tasks.
They can only incorporate new knowledge through training or supervised fine-tuning processes.
This precise, up-to-date, and private information is typically stored in relational databases.
arXiv Detail & Related papers (2024-07-21T06:19:10Z) - MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL [47.120862170230566]
Recent Text-to-yourself methods usually suffer from significant performance degradation on "huge" databases.
We introduce MAC, a novel Text-to-yourself LLM-based multi-agent collaborative framework.
In our framework, we leverage GPT-4 as the strong backbone for all agent tasks to determine the upper bound of our framework.
We then fine-tune an open-sourced instruction-followed model,sql-Llama, by leveraging Code 7B, to accomplish all tasks as GPT-4 does.
arXiv Detail & Related papers (2023-12-18T14:40:20Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
We introduce an efficient framework called textbfInteRecAgent, which employs LLMs as the brain and recommender models as tools.
InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs.
arXiv Detail & Related papers (2023-08-31T07:36:44Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Querying Large Language Models with SQL [16.383179496709737]
In many use-cases, information is stored in text but not available in structured data.
With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents.
We present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM.
arXiv Detail & Related papers (2023-04-02T06:58:14Z) - Demo of the Linguistic Field Data Management and Analysis System -- LiFE [1.2139158398361864]
LiFE is an open-source, web-based linguistic data management and analysis application.
It allows users to store lexical items, sentences, paragraphs, audio-visual content with rich glossing / annotation.
It generates interactive and print dictionaries; and also train and use natural language processing tools and models.
arXiv Detail & Related papers (2022-03-22T03:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.