Retrieval-Augmented Personalization for Multimodal Large Language Models
- URL: http://arxiv.org/abs/2410.13360v2
- Date: Mon, 18 Nov 2024 15:35:14 GMT
- Title: Retrieval-Augmented Personalization for Multimodal Large Language Models
- Authors: Haoran Hao, Jiaming Han, Changsheng Li, Yu-Feng Li, Xiangyu Yue,
- Abstract summary: We introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization.
RAP allows real-time concept editing via updating the external database.
RAP-MLLMs can generalize to infinite visual concepts without additional finetuning.
- Score: 53.304699445700926
- License:
- Abstract: The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.