論文の概要: Anomaly Correction of Business Processes Using Transformer Autoencoder
- arxiv url: http://arxiv.org/abs/2404.10211v1
- Date: Tue, 16 Apr 2024 01:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 18:22:10.664413
- Title: Anomaly Correction of Business Processes Using Transformer Autoencoder
- Title(参考訳): 変圧器オートエンコーダを用いた業務プロセスの異常補正
- Authors: Ziyou Gong, Xianwen Fang, Ping Wu,
- Abstract要約: トランスフォーマーオートエンコーダに基づく業務プロセス異常訂正手法を提案する。
自己アテンション機構とオートエンコーダ構造を用いることで、任意の長さのイベントシーケンスを効率的に処理することができる。
いくつかの実生活イベントログの実験結果から,提案手法は従来手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event log records all events that occur during the execution of business processes, so detecting and correcting anomalies in event log can provide reliable guarantee for subsequent process analysis. The previous works mainly include next event prediction based methods and autoencoder-based methods. These methods cannot accurately and efficiently detect anomalies and correct anomalies at the same time, and they all rely on the set threshold to detect anomalies. To solve these problems, we propose a business process anomaly correction method based on Transformer autoencoder. By using self-attention mechanism and autoencoder structure, it can efficiently process event sequences of arbitrary length, and can directly output corrected business process instances, so that it can adapt to various scenarios. At the same time, the anomaly detection is transformed into a classification problem by means of selfsupervised learning, so that there is no need to set a specific threshold in anomaly detection. The experimental results on several real-life event logs show that the proposed method is superior to the previous methods in terms of anomaly detection accuracy and anomaly correction results while ensuring high running efficiency.
- Abstract(参考訳): イベントログはビジネスプロセスの実行中に発生するすべてのイベントを記録します。
以前の作業には、主に次のイベント予測ベースのメソッドとオートエンコーダベースのメソッドが含まれていた。
これらの手法は、異常と異常を同時に正確にかつ効率的に検出することができず、これらは全て異常を検出するために設定された閾値に依存している。
これらの問題を解決するために,トランスフォーマーオートエンコーダに基づく業務プロセス異常訂正手法を提案する。
自己アテンション機構とオートエンコーダ構造を使用することで、任意の長さのイベントシーケンスを効率的に処理することができ、修正されたビジネスプロセスインスタンスを直接出力することで、さまざまなシナリオに適応することができる。
同時に、異常検出は自己教師付き学習によって分類問題に変換されるので、異常検出において特定のしきい値を設定する必要がない。
いくつかの実生活イベントログの実験結果から,提案手法は異常検出精度および異常訂正結果の点で従来の手法よりも優れ,高い実行効率を確保した。
関連論文リスト
- A Coin Has Two Sides: A Novel Detector-Corrector Framework for Chinese Spelling Correction [79.52464132360618]
中国語のSpelling Correction(CSC)は、自然言語処理(NLP)の基本課題である。
本稿では,エラー検出・相関器の枠組みに基づく新しい手法を提案する。
我々の検出器は2つのエラー検出結果を得るように設計されており、それぞれ高精度とリコールが特徴である。
論文 参考訳(メタデータ) (2024-09-06T09:26:45Z) - Event Detection via Probability Density Function Regression [0.0]
本研究では、時間間隔定義イベント検出問題を再編成する一般化回帰に基づく手法を提案する。
コンピュータビジョンからの熱マップ回帰技術にインスパイアされた本手法は,事象発生時の確率密度を予測することを目的としている。
回帰に基づくアプローチは,様々な最先端のベースラインネットワークやデータセットのセグメンテーションに基づく手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-08-23T01:58:56Z) - Detecting Anomalous Events in Object-centric Business Processes via
Graph Neural Networks [55.583478485027]
本研究では,ビジネスプロセスにおける異常検出のための新しいフレームワークを提案する。
まず、属性グラフとしてオブジェクト中心のイベントログのプロセス依存性を再構築する。
次に、異常事象を検出するために、グラフ畳み込みオートエンコーダアーキテクチャを用いる。
論文 参考訳(メタデータ) (2024-02-14T14:17:56Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Sintel: A Machine Learning Framework to Extract Insights from Signals [13.04826679898367]
Sintelは、異常検出などのエンドツーエンドの時系列タスクのための機械学習フレームワークである。
Sintelは異常検出の全ジャーニーをログし、時間とともに異常の詳細なドキュメントを提供する。
ユーザは、インタラクティブな視覚化ツールを使って、信号を分析し、メソッドを比較し、異常を調査できる。
論文 参考訳(メタデータ) (2022-04-19T19:38:27Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - Recomposition vs. Prediction: A Novel Anomaly Detection for Discrete
Events Based On Autoencoder [5.781280693720236]
侵入検知の分野で最も難しい問題の1つは、離散イベントログの異常検出である。
離散イベントログのDeep Autoencoderベースの異常検出手法であるDabLogを提案する。
解析(符号化)と再構成(復号化)により、シーケンスが正常または異常かどうかを判定します。
論文 参考訳(メタデータ) (2020-12-27T16:31:05Z) - A Background-Agnostic Framework with Adversarial Training for Abnormal
Event Detection in Video [120.18562044084678]
近年,ビデオにおける異常事象検出は複雑なコンピュータビジョンの問題として注目されている。
通常のイベントのみを含むトレーニングビデオから学習するバックグラウンドに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2020-08-27T18:39:24Z) - CRATOS: Cognition of Reliable Algorithm for Time-series Optimal Solution [12.906367105870341]
CRATOSは、時系列から特徴を抽出し、同様の特徴を持つクラスタシリーズを1つのグループにまとめる自己適応アルゴリズムである。
本手法は,異常検出の開発・保守コストを大幅に削減することができる。
本論文における異常検出アルゴリズムの精度は85.1%である。
論文 参考訳(メタデータ) (2020-03-03T09:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。