Closed-Loop Open-Vocabulary Mobile Manipulation with GPT-4V
- URL: http://arxiv.org/abs/2404.10220v1
- Date: Tue, 16 Apr 2024 02:01:56 GMT
- Title: Closed-Loop Open-Vocabulary Mobile Manipulation with GPT-4V
- Authors: Peiyuan Zhi, Zhiyuan Zhang, Muzhi Han, Zeyu Zhang, Zhitian Li, Ziyuan Jiao, Baoxiong Jia, Siyuan Huang,
- Abstract summary: We present COME-robot, the first closed-loop framework for autonomous robot navigation and manipulation in open environments.
We meticulously construct a library of action primitives for robot exploration, navigation, and manipulation, serving as callable execution modules for GPT-4V in task planning.
We conduct comprehensive analyses to elucidate how COME-robot's design facilitates failure recovery, free-form instruction following, and long-horizon task planning.
- Score: 38.80155683176581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous robot navigation and manipulation in open environments require reasoning and replanning with closed-loop feedback. We present COME-robot, the first closed-loop framework utilizing the GPT-4V vision-language foundation model for open-ended reasoning and adaptive planning in real-world scenarios. We meticulously construct a library of action primitives for robot exploration, navigation, and manipulation, serving as callable execution modules for GPT-4V in task planning. On top of these modules, GPT-4V serves as the brain that can accomplish multimodal reasoning, generate action policy with code, verify the task progress, and provide feedback for replanning. Such design enables COME-robot to (i) actively perceive the environments, (ii) perform situated reasoning, and (iii) recover from failures. Through comprehensive experiments involving 8 challenging real-world tabletop and manipulation tasks, COME-robot demonstrates a significant improvement in task success rate (~25%) compared to state-of-the-art baseline methods. We further conduct comprehensive analyses to elucidate how COME-robot's design facilitates failure recovery, free-form instruction following, and long-horizon task planning.
Related papers
- RoBridge: A Hierarchical Architecture Bridging Cognition and Execution for General Robotic Manipulation [90.81956345363355]
RoBridge is a hierarchical intelligent architecture for general robotic manipulation.<n>It consists of a high-level cognitive planner (HCP) based on a large-scale pre-trained vision-language model (VLM)<n>It unleashes the procedural skill of reinforcement learning, effectively bridging the gap between cognition and execution.
arXiv Detail & Related papers (2025-05-03T06:17:18Z) - REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation [57.628771707989166]
We propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution.
ReMAC incorporates two key modules: a self-reflection module performing pre-conditions and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning.
arXiv Detail & Related papers (2025-03-28T03:51:40Z) - PIVOT-R: Primitive-Driven Waypoint-Aware World Model for Robotic Manipulation [68.17081518640934]
We propose a PrIrmitive-driVen waypOinT-aware world model for Robotic manipulation (PIVOT-R)
PIVOT-R consists of a Waypoint-aware World Model (WAWM) and a lightweight action prediction module.
Our PIVOT-R outperforms state-of-the-art open-source models on the SeaWave benchmark, achieving an average relative improvement of 19.45% across four levels of instruction tasks.
arXiv Detail & Related papers (2024-10-14T11:30:18Z) - Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
Large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information.
We propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions.
arXiv Detail & Related papers (2024-08-15T17:33:32Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
We introduce Marking Open-world Keypoint Affordances (MOKA) to solve robotic manipulation tasks specified by free-form language instructions.
Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world.
We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
arXiv Detail & Related papers (2024-03-05T18:08:45Z) - QUAR-VLA: Vision-Language-Action Model for Quadruped Robots [37.952398683031895]
The central idea is to elevate the overall intelligence of the robot.
We propose QUAdruped Robotic Transformer (QUART), a family of VLA models to integrate visual information and instructions from diverse modalities as input.
Our approach leads to performant robotic policies and enables QUART to obtain a range of emergent capabilities.
arXiv Detail & Related papers (2023-12-22T06:15:03Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - GPT-4V(ision) for Robotics: Multimodal Task Planning from Human Demonstration [8.07285448283823]
We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation.
This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances.
Experiments across various scenarios demonstrate the method's efficacy in enabling real robots to operate from one-shot human demonstrations.
arXiv Detail & Related papers (2023-11-20T18:54:39Z) - AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot
Manipulation [50.737355245505334]
We propose a novel framework for learning high-level cognitive capabilities in robot manipulation tasks.
The resulting dataset AlphaBlock consists of 35 comprehensive high-level tasks of multi-step text plans and paired observation.
arXiv Detail & Related papers (2023-05-30T09:54:20Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
We need intelligent robots for mobile construction, the process of navigating in an environment and modifying its structure according to a geometric design.
In this task, a major robot vision and learning challenge is how to exactly achieve the design without GPS.
We benchmark the performance of a handcrafted policy with basic localization and planning, and state-of-the-art deep reinforcement learning methods.
arXiv Detail & Related papers (2021-03-31T00:05:54Z) - Learning Symbolic Operators for Task and Motion Planning [29.639902380586253]
integrated task and motion planners (TAMP) handle the complex interaction between motion-level decisions and task-level plan feasibility.
TAMP approaches rely on domain-specific symbolic operators to guide the task-level search, making planning efficient.
We propose a bottom-up relational learning method for operator learning and show how the learned operators can be used for planning in a TAMP system.
arXiv Detail & Related papers (2021-02-28T19:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.