Two-Stage Stance Labeling: User-Hashtag Heuristics with Graph Neural Networks
- URL: http://arxiv.org/abs/2404.10228v2
- Date: Fri, 17 May 2024 14:07:24 GMT
- Title: Two-Stage Stance Labeling: User-Hashtag Heuristics with Graph Neural Networks
- Authors: Joshua Melton, Shannon Reid, Gabriel Terejanu, Siddharth Krishnan,
- Abstract summary: We develop a two stage stance labeling method that utilizes the user-hashtag bipartite graph and the user-user interaction graph.
In the first stage, a simple and efficient for stance labeling uses the user-hashtag bipartite graph to update the stance association of user and hashtag nodes.
This set of soft labels is then integrated with the user-user interaction graph to train a graph neural network (GNN) model.
- Score: 2.474908349649168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The high volume and rapid evolution of content on social media present major challenges for studying the stance of social media users. In this work, we develop a two stage stance labeling method that utilizes the user-hashtag bipartite graph and the user-user interaction graph. In the first stage, a simple and efficient heuristic for stance labeling uses the user-hashtag bipartite graph to iteratively update the stance association of user and hashtag nodes via a label propagation mechanism. This set of soft labels is then integrated with the user-user interaction graph to train a graph neural network (GNN) model using semi-supervised learning. We evaluate this method on two large-scale datasets containing tweets related to climate change from June 2021 to June 2022 and gun control from January 2022 to January 2023. Our experiments demonstrate that enriching text-based embeddings of users with network information from the user interaction graph using our semi-supervised GNN method outperforms both classifiers trained on user textual embeddings and zero-shot classification using LLMs such as GPT4. We discuss the need for integrating nuanced understanding from social science with the scalability of computational methods to better understand how polarization on social media occurs for divisive issues such as climate change and gun control.
Related papers
- One Node Per User: Node-Level Federated Learning for Graph Neural Networks [7.428431479479646]
We propose a novel framework for node-level federated graph learning.
We introduce a graph Laplacian term based on the feature vector's latent representation to regulate the user-side model updates.
arXiv Detail & Related papers (2024-09-29T02:16:07Z) - LOSS-GAT: Label Propagation and One-Class Semi-Supervised Graph
Attention Network for Fake News Detection [2.6396287656676725]
Loss-GAT is a semi-supervised and one-class approach for fake news detection.
We employ a two-step label propagation algorithm to categorize news into two groups: interest (fake) and non-interest (real)
arXiv Detail & Related papers (2024-02-13T12:02:37Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
We propose Contrastive Graph-Text pretraining (ConGraT) for jointly learning separate representations of texts and nodes in a text-attributed graph (TAG)
Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP.
Experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling.
arXiv Detail & Related papers (2023-05-23T17:53:30Z) - DoubleH: Twitter User Stance Detection via Bipartite Graph Neural
Networks [9.350629400940493]
We crawl a large-scale dataset of the 2020 US presidential election and automatically label all users by manually tagged hashtags.
We propose a bipartite graph neural network model, DoubleH, which aims to better utilize homogeneous and heterogeneous information in user stance detection tasks.
arXiv Detail & Related papers (2023-01-20T19:20:10Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
We study the node classification problem in the hierarchical graph where a 'node' is a graph instance.
We propose the Hierarchical Graph Mutual Information (HGMI) and present a way to compute HGMI with theoretical guarantee.
We demonstrate the effectiveness of this hierarchical graph modeling and the proposed SEAL-CI method on text and social network data.
arXiv Detail & Related papers (2022-06-11T04:05:29Z) - Evidential Temporal-aware Graph-based Social Event Detection via
Dempster-Shafer Theory [76.4580340399321]
We propose ETGNN, a novel Evidential Temporal-aware Graph Neural Network.
We construct view-specific graphs whose nodes are the texts and edges are determined by several types of shared elements respectively.
Considering the view-specific uncertainty, the representations of all views are converted into mass functions through evidential deep learning (EDL) neural networks.
arXiv Detail & Related papers (2022-05-24T16:22:40Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Tracing Topic Transitions with Temporal Graph Clusters [4.901193306593378]
Twitter serves as a data source for many Natural Language Processing (NLP) tasks.
It can be challenging to identify topics on Twitter due to continuous updating data stream.
We present an unsupervised graph based framework to identify the evolution of sub-topics within two weeks of real-world Twitter data.
arXiv Detail & Related papers (2021-04-16T00:55:31Z) - Exploiting Heterogeneous Graph Neural Networks with Latent Worker/Task
Correlation Information for Label Aggregation in Crowdsourcing [72.34616482076572]
Crowdsourcing has attracted much attention for its convenience to collect labels from non-expert workers instead of experts.
We propose a novel framework based on graph neural networks for aggregating crowd labels.
arXiv Detail & Related papers (2020-10-25T10:12:37Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Inverse Graph Identification: Can We Identify Node Labels Given Graph
Labels? [89.13567439679709]
Graph Identification (GI) has long been researched in graph learning and is essential in certain applications.
This paper defines a novel problem dubbed Inverse Graph Identification (IGI)
We propose a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI.
arXiv Detail & Related papers (2020-07-12T12:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.