Efficient diffraction control using a tunable active-Raman gain medium
- URL: http://arxiv.org/abs/2404.10280v1
- Date: Tue, 16 Apr 2024 04:47:26 GMT
- Title: Efficient diffraction control using a tunable active-Raman gain medium
- Authors: Sandeep Sharma,
- Abstract summary: We present a new scheme to create all-optical and tunable waveguide using a controllable coherent Raman process in an atomic rubidium vapor in N-type configuration.
We numerically demonstrate that such a waveguide is able to guide arbitrary modes of a weak probe beam to several Rayleigh length without diffraction and absorption.
- Score: 2.5275980099154984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new scheme to create all-optical tunable and lossless waveguide using a controllable coherent Raman process in an atomic rubidium vapor in N-type configuration. We employ a Gaussian Raman field and a Laguerre-Gaussian control field to imprint a high-contrast tunable waveguide-like feature inside the atomic medium. We numerically demonstrate that such a waveguide is able to guide arbitrary modes of a weak probe beam to several Rayleigh length without diffraction and absorption. Our results on all-optical waveguide based scheme may have potential application in lossless image processing, high contrast biomedical imaging and image metrology.
Related papers
- Avoiding lateral mode leakage in thin film lithium niobate waveguides
for the generation of spectrally pure photons at telecom wavelengths [0.0]
Photonic integrated optical components, notably straight waveguides, serve as pivotal elements for on-chip generation and manipulation of quantum states of light.
We focus on optimizing waveguides based on lithium niobate on insulator (LNOI) to generate photon pairs at telecom wavelength using spontaneous parametric down-conversion (SPDC)
Specifically, we investigate lateral leakage for all possible SPDC processes involving type 0, type I and type II phase matching conditions in an X-cut lithium niobate waveguide.
arXiv Detail & Related papers (2024-02-08T14:12:55Z) - Systematic design of a robust half-W1 photonic crystal waveguide for
interfacing slow light and trapped cold atoms [0.0]
Novel platforms interfacing trapped cold atoms and guided light in nanoscale waveguides are a promising route to achieve a regime of strong coupling between light and atoms in single pass.
We propose to interface Rubidium atoms with a photonic-crystal waveguide based on a large-index GaInP slab.
arXiv Detail & Related papers (2023-01-11T19:01:07Z) - On-chip polarization-encoded single-qubit gates with twisted waveguides [58.720142291102135]
We develop a theory of a twisted waveguide unveiling its eigenmodes and transmission matrix in the closed form.
We demonstrate that twisted waveguides can realize virtually arbitrary polarization transformations while satisfying reasonable design constraints.
arXiv Detail & Related papers (2022-12-27T16:00:07Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Millimeter wave to terahertz compact and low-loss superconducting
plasmonic waveguides for cryogenic integrated nano-photonics [0.0]
We demonstrate a plasmonic slot waveguide, at the nanometer scale, based on high transition temperature superconductor BSCCO.
The proposed device can open up a new route towards realizing cryogenic low-loss photonic integrated circuitry at the nanoscale.
arXiv Detail & Related papers (2021-06-16T07:41:09Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z) - Interaction signatures and non-Gaussian photon states from a strongly
driven atomic ensemble coupled to a nanophotonic waveguide [0.0]
We study theoretically a laser-driven one-dimensional chain of atoms interfaced with the guided optical modes of a nanophotonic waveguide.
We find that the fluorescence excitation line shape changes as the number of atoms is increased, eventually undergoing a splitting that provides evidence for the waveguide-mediated all-to-all interactions.
arXiv Detail & Related papers (2020-03-03T16:13:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.