Spectro-temporally tailored Non-Gaussian Quantum Operations in Thin-Film Waveguides
- URL: http://arxiv.org/abs/2508.04578v1
- Date: Wed, 06 Aug 2025 16:03:18 GMT
- Title: Spectro-temporally tailored Non-Gaussian Quantum Operations in Thin-Film Waveguides
- Authors: Peter Namdar, Patrick Folge, Carlos E. Lopetegui, Silia Babel, Benjamin Brecht, Christine Silberhorn, Valentina Parigi,
- Abstract summary: We address the challenge of implementing spectro-temporal mode-selective non-Gaussian quantum operations in the telecom wavelength regime.<n>We present the first design framework for achieving mode-selective SPA and SPS using thin-film lithium niobate nonlinear waveguide platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in photonic platforms have enabled the precise control of light's spectral and temporal degrees of freedom, a capability crucial for the development of scalable quantum information systems. In this work, we address the challenge of implementing spectro-temporal mode-selective non-Gaussian quantum operations, specifically single-photon subtraction (SPS) and addition (SPA), in the telecom wavelength regime. Building on prior experimental demonstrations of mode-selective near-infrared SPS, we present the first design framework for achieving mode-selective SPA and SPS using thin-film lithium niobate nonlinear waveguide platforms. We introduce an inverse-design optimization scheme by modeling the quantum-optical response via the Joint Spectral Amplitude and Transfer Function, in order to identify optimal waveguide and pump parameters that maximize mode selectivity and state purity. This approach is first tested on a metallic waveguide design. We then exploit the dispersion engineering capabilities of thin-film waveguides, which offer enhanced nonlinear interactions through tighter light confinement. Our findings demonstrate that tailored nonlinear processes, particularly parametric down-conversion and frequency up-conversion, can support high-fidelity non-Gaussian operations essential for next-generation quantum photonic networks.
Related papers
- Quantum Imaging Using Spatially Entangled Photon Pairs from a Nonlinear Metasurface [0.4188114563181615]
metasurfaces with subwavelength thickness were recently established as versatile platforms for the enhanced and tailorable generation of entangled photon pairs.
Here, we demonstrate the unique benefits and practical potential of nonlinear metasurfaces for quantum imaging at infrared wavelengths.
We reconstruct the images of 2D objects using just a 1D detector array in the idler path and a bucket detector in the signal path, by recording the dependencies of photon coincidences on the pump wavelength.
arXiv Detail & Related papers (2024-08-06T02:25:34Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Tunable Generation of Spatial Entanglement in Nonlinear Waveguide Arrays [0.0]
We demonstrate a compact source of path-entangled photon pairs based on parametric down-conversion in semiconductor nonlinear waveguides arrays.<n>We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.<n>This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - All-optical modulation with single-photons using electron avalanche [66.27103948750306]
We demonstrate all-optical modulation enabled by electron avalanche process in silicon.<n>Our approach opens the possibility of gigahertz-speed, and potentially even faster, optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Variational waveguide QED simulators [58.720142291102135]
Waveguide QED simulators are made by quantum emitters interacting with one-dimensional photonic band-gap materials.
Here, we demonstrate how these interactions can be a resource to develop more efficient variational quantum algorithms.
arXiv Detail & Related papers (2023-02-03T18:55:08Z) - Biphoton engineering using modal spatial overlap on-chip [2.9880862883728105]
We show that by utilizing modal coupling in a system of coupled waveguides, we explore the modal field overlap as a new degree of freedom for biphoton engineering.
This strategy can be applied to waveguides of different materials and structures, offering new possibilities for photonic quantum state engineering.
arXiv Detail & Related papers (2022-10-29T06:04:30Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Generation of entangled photons via parametric down-conversion in
semiconductor lasers and integrated quantum photonic systems [0.0]
We develop a nonperturbative quantum theory of parametric down-conversion of waveguide modes.
We extend our theory to the regime of quantized pump fields with a new approach based on the propagation equation for the state vector.
Our formalism is applicable to a wide variety of three-wave mixing propagation problems.
arXiv Detail & Related papers (2021-08-07T21:41:46Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.