論文の概要: Wireless Earphone-based Real-Time Monitoring of Breathing Exercises: A Deep Learning Approach
- arxiv url: http://arxiv.org/abs/2404.10310v1
- Date: Tue, 16 Apr 2024 06:37:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 17:52:48.265393
- Title: Wireless Earphone-based Real-Time Monitoring of Breathing Exercises: A Deep Learning Approach
- Title(参考訳): 無線イヤホンによる呼吸運動のリアルタイムモニタリング:ディープラーニングによるアプローチ
- Authors: Hassam Khan Wazir, Zaid Waghoo, Vikram Kapila,
- Abstract要約: 本稿では,在宅治療における患者のコンプライアンスを評価できる枠組みを提案する。
提案システムは,呼吸相と流路を高精度にリアルタイムに検出する。
その結果, 実時間呼吸路と位相検出にコモディティイヤホンを使用することの可能性が示された。
- 参考スコア(独自算出の注目度): 0.10923877073891444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several therapy routines require deep breathing exercises as a key component and patients undergoing such therapies must perform these exercises regularly. Assessing the outcome of a therapy and tailoring its course necessitates monitoring a patient's compliance with the therapy. While therapy compliance monitoring is routine in a clinical environment, it is challenging to do in an at-home setting. This is so because a home setting lacks access to specialized equipment and skilled professionals needed to effectively monitor the performance of a therapy routine by a patient. For some types of therapies, these challenges can be addressed with the use of consumer-grade hardware, such as earphones and smartphones, as practical solutions. To accurately monitor breathing exercises using wireless earphones, this paper proposes a framework that has the potential for assessing a patient's compliance with an at-home therapy. The proposed system performs real-time detection of breathing phases and channels with high accuracy by processing a $\mathbf{500}$ ms audio signal through two convolutional neural networks. The first network, called a channel classifier, distinguishes between nasal and oral breathing, and a pause. The second network, called a phase classifier, determines whether the audio segment is from inhalation or exhalation. According to $k$-fold cross-validation, the channel and phase classifiers achieved a maximum F1 score of $\mathbf{97.99\%}$ and $\mathbf{89.46\%}$, respectively. The results demonstrate the potential of using commodity earphones for real-time breathing channel and phase detection for breathing therapy compliance monitoring.
- Abstract(参考訳): いくつかの治療ルーチンは、重要な要素として深呼吸運動を必要とし、そのような治療を行う患者は定期的にこれらの運動を行う必要がある。
治療の結果を評価し、そのコースを調整するには、患者の治療へのコンプライアンスを監視する必要がある。
臨床環境では治療コンプライアンスモニタリングが日常的に行われているが,在宅環境では実施が困難である。
これは、患者によるセラピールーチンの実行を効果的に監視するために必要な専門的な機器や熟練した専門家へのアクセスが欠如しているためである。
ある種の治療法では、これらの課題は、実用的な解決策として、イヤホンやスマートフォンのようなコンシューマグレードのハードウェアを使用することで解決することができる。
ワイヤレスイヤホンを用いて呼吸運動を正確にモニタリングするために,在宅治療における患者のコンプライアンスを評価するための枠組みを提案する。
提案システムは,2つの畳み込みニューラルネットワークを用いて,$\mathbf{500}$ ms音声信号を処理することにより,呼吸相とチャネルを高精度にリアルタイムに検出する。
チャネル分類器と呼ばれる最初のネットワークは、鼻と口腔の呼吸と一時停止を区別する。
位相分類器と呼ばれる第2のネットワークは、オーディオセグメントが吸入か吸入かを決定する。
k$-foldクロスバリデーションによると、チャネルと位相分類器はそれぞれ$\mathbf{97.99\%}$と$\mathbf{89.46\%}$のF1スコアを達成した。
以上の結果から, 実時間呼吸路と位相検出にコモディティイヤホンを用いた呼吸療法コンプライアンスモニタリングの可能性が示された。
関連論文リスト
- Machine learning-based algorithms for at-home respiratory disease monitoring and respiratory assessment [45.104212062055424]
本研究の目的は、在宅呼吸器疾患のモニタリングと評価を容易にする機械学習ベースのアルゴリズムを開発することである。
健常成人30名を対象に, 呼吸圧, 血流, 胸腹部周囲の動的計測を行った。
ランダムフォレスト分類器、ロジスティック回帰、サポートベクターマシン(SVM)など、さまざまな機械学習モデルをトレーニングし、呼吸タイプを予測する。
論文 参考訳(メタデータ) (2024-09-05T02:14:31Z) - Pre-Trained Foundation Model representations to uncover Breathing patterns in Speech [2.935056044470713]
呼吸速度(英: respiratory rate, RR)は、個人の健康、フィットネス、健康全般を評価するために用いられる重要な指標である。
RRを測定するための既存のアプローチは、特殊装備や訓練を用いて実施されている。
機械学習アルゴリズムは、バイオセンサー信号を入力としてRRを推定できることを示した。
論文 参考訳(メタデータ) (2024-07-17T21:57:18Z) - Show from Tell: Audio-Visual Modelling in Clinical Settings [58.88175583465277]
臨床環境でのオーディオ・ビジュアル・モデリングを考察し、人間の専門的アノテーションを使わずに医学的表現を学習するためのソリューションを提供する。
この目的のために, 単純かつ効果的なマルチモーダル自己教師型学習フレームワークを提案する。
提案手法は,音声のみを基準として,超音波画像中の解剖学的関心領域をローカライズすることができる。
論文 参考訳(メタデータ) (2023-10-25T08:55:48Z) - U-PASS: an Uncertainty-guided deep learning Pipeline for Automated Sleep
Staging [61.6346401960268]
プロセスの各段階で不確実性推定を組み込んだ臨床応用に適した,U-PASSと呼ばれる機械学習パイプラインを提案する。
不確実性誘導型ディープラーニングパイプラインを睡眠ステージングの困難な問題に適用し、各ステージにおけるパフォーマンスを体系的に改善することを示す。
論文 参考訳(メタデータ) (2023-06-07T08:27:36Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
戦略トレーニング (Strategy Training) とは、脳卒中後の認知障害患者に障害を減らすためのスキルを教える、リハビリテーションのアプローチである。
標準化された忠実度評価は治療原則の遵守度を測定するために用いられる。
本研究では,ルールベースNLPアルゴリズム,長短項メモリ(LSTM)モデル,および変換器(BERT)モデルからの双方向エンコーダ表現を開発した。
論文 参考訳(メタデータ) (2022-09-14T15:33:30Z) - Minute ventilation measurement using Plethysmographic Imaging and
lighting parameters [8.739176372427842]
睡眠時無呼吸などの呼吸障害は、肺の酸素と二酸化炭素を含有/交換する能力が不足し、体がホメオスタシスの安定した状態にあることを保証するために、多数の個人に影響を及ぼす致命的な疾患である。
微小換気などの呼吸測定は、心拍数や心拍変動などの他の生理的測定と相関して、健康状態の遠隔監視や呼吸関連疾患の症状の検出に用いられる。
論文 参考訳(メタデータ) (2022-08-29T00:42:48Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - A Machine Learning Approach for Delineating Similar Sound Symptoms of
Respiratory Conditions on a Smartphone [0.0]
我々は、現代のスマートフォンの計算能力と記憶能力の改善を活用し、機械学習アルゴリズムを用いて呼吸音の症状を識別する。
携帯電話上でのこれらのアルゴリズムの性能は、スマートフォンがリアルタイムシナリオにおける呼吸症状の認識と識別のための代替ツールであることを示している。
論文 参考訳(メタデータ) (2021-10-15T07:24:30Z) - Personalized Rehabilitation Robotics based on Online Learning Control [62.6606062732021]
本稿では,各ユーザに対して実行時の制御力をパーソナライズ可能な,新しいオンライン学習制御アーキテクチャを提案する。
提案手法を,学習コントローラがパーソナライズされた制御を提供するとともに,安全な相互作用力も得られる実験ユーザスタディで評価した。
論文 参考訳(メタデータ) (2021-10-01T15:28:44Z) - Collaborative Three-Tier Architecture Non-contact Respiratory Rate
Monitoring using Target Tracking and False Peaks Eliminating Algorithms [10.232449356645608]
非接触呼吸モニタリング技術は、照明やモーションアーティファクトのような環境の影響に敏感であるため、精度が低い。
ユーザとクラウド間の頻繁な接触は、サービス要求の遅延と、個人情報の喪失を引き起こす可能性がある。
我々は,呼吸モニタリングの精度を高め,データ伝送遅延を低減するために,協調的な3層設計による非接触呼吸率モニタリングシステムを提案した。
論文 参考訳(メタデータ) (2020-11-17T07:33:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。