Advancing Long-Term Multi-Energy Load Forecasting with Patchformer: A Patch and Transformer-Based Approach
- URL: http://arxiv.org/abs/2404.10458v1
- Date: Tue, 16 Apr 2024 10:56:33 GMT
- Title: Advancing Long-Term Multi-Energy Load Forecasting with Patchformer: A Patch and Transformer-Based Approach
- Authors: Qiuyi Hong, Fanlin Meng, Felipe Maldonado,
- Abstract summary: This paper introduces Patchformer, a novel model that integrates patch embedding with encoder-decoder Transformer-based architectures.
Patchformer is illustrated as the only model that follows the positive correlation between model performance and the length of the past sequence.
- Score: 1.4228349888743608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of increasing demands for long-term multi-energy load forecasting in real-world applications, this paper introduces Patchformer, a novel model that integrates patch embedding with encoder-decoder Transformer-based architectures. To address the limitation in existing Transformer-based models, which struggle with intricate temporal patterns in long-term forecasting, Patchformer employs patch embedding, which predicts multivariate time-series data by separating it into multiple univariate data and segmenting each of them into multiple patches. This method effectively enhances the model's ability to capture local and global semantic dependencies. The numerical analysis shows that the Patchformer obtains overall better prediction accuracy in both multivariate and univariate long-term forecasting on the novel Multi-Energy dataset and other benchmark datasets. In addition, the positive effect of the interdependence among energy-related products on the performance of long-term time-series forecasting across Patchformer and other compared models is discovered, and the superiority of the Patchformer against other models is also demonstrated, which presents a significant advancement in handling the interdependence and complexities of long-term multi-energy forecasting. Lastly, Patchformer is illustrated as the only model that follows the positive correlation between model performance and the length of the past sequence, which states its ability to capture long-range past local semantic information.
Related papers
- Ister: Inverted Seasonal-Trend Decomposition Transformer for Explainable Multivariate Time Series Forecasting [10.32586981170693]
Inverted Seasonal-Trend Decomposition Transformer (Ister)
We introduce a novel Dot-attention mechanism that improves interpretability, computational efficiency, and predictive accuracy.
Ister enables intuitive visualization of component contributions, shedding lights on model's decision process and enhancing transparency in prediction results.
arXiv Detail & Related papers (2024-12-25T06:37:19Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - Integration of Mamba and Transformer -- MAT for Long-Short Range Time Series Forecasting with Application to Weather Dynamics [7.745945701278489]
Long-short range time series forecasting is essential for predicting future trends and patterns over extended periods.
Deep learning models such as Transformers have made significant strides in advancing time series forecasting.
This article examines the advantages and disadvantages of both Mamba and Transformer models.
arXiv Detail & Related papers (2024-09-13T04:23:54Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
We propose a complete solution to address problems in terms of feature extraction and target prediction.
For extraction, we design an efficient-temporal encoding extractor including a semi-adaptive graph to acquire sufficient-temporal information.
For prediction, we propose a Cascaded De Predictor (CDP) to strengthen the correlation between different intervals.
arXiv Detail & Related papers (2023-05-25T13:00:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.