Data-driven subgrouping of patient trajectories with chronic diseases: Evidence from low back pain
- URL: http://arxiv.org/abs/2404.10580v1
- Date: Tue, 16 Apr 2024 14:05:29 GMT
- Title: Data-driven subgrouping of patient trajectories with chronic diseases: Evidence from low back pain
- Authors: Christof Naumzik, Alice Kongsted, Werner Vach, Stefan Feuerriegel,
- Abstract summary: We propose a novel mixture hidden Markov model for subgrouping patient trajectories from chronic diseases.
Our model is probabilistic and carefully designed to capture different trajectory phases of chronic diseases.
We show that our subgrouping framework outperforms common baselines in terms of cluster validity indices.
- Score: 18.837597864085865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical data informs the personalization of health care with a potential for more effective disease management. In practice, this is achieved by subgrouping, whereby clusters with similar patient characteristics are identified and then receive customized treatment plans with the goal of targeting subgroup-specific disease dynamics. In this paper, we propose a novel mixture hidden Markov model for subgrouping patient trajectories from chronic diseases. Our model is probabilistic and carefully designed to capture different trajectory phases of chronic diseases (i.e., "severe", "moderate", and "mild") through tailored latent states. We demonstrate our subgrouping framework based on a longitudinal study across 847 patients with non-specific low back pain. Here, our subgrouping framework identifies 8 subgroups. Further, we show that our subgrouping framework outperforms common baselines in terms of cluster validity indices. Finally, we discuss the applicability of the model to other chronic and long-lasting diseases.
Related papers
- Identifying latent disease factors differently expressed in patient subgroups using group factor analysis [54.67330718129736]
We propose a novel approach to uncover subgroup-specific and subgroup-common latent factors.
The proposed approach, sparse Group Factor Analysis (GFA) with regularised horseshoe priors, was implemented with probabilistic programming.
arXiv Detail & Related papers (2024-10-10T13:12:14Z) - Federated unsupervised random forest for privacy-preserving patient
stratification [0.4499833362998487]
We introduce a novel multi-omics clustering approach utilizing unsupervised random-forests.
We have validated our approach on machine learning benchmark data sets and on cancer data from The Cancer Genome Atlas.
Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability.
arXiv Detail & Related papers (2024-01-29T12:04:14Z) - T-Phenotype: Discovering Phenotypes of Predictive Temporal Patterns in
Disease Progression [82.85825388788567]
We develop a novel temporal clustering method, T-Phenotype, to discover phenotypes of predictive temporal patterns from labeled time-series data.
We show that T-Phenotype achieves the best phenotype discovery performance over all the evaluated baselines.
arXiv Detail & Related papers (2023-02-24T13:30:35Z) - Longitudinal patient stratification of electronic health records with
flexible adjustment for clinical outcomes [0.7874708385247353]
We develop a recurrent neural network autoencoder to cluster EHR data using reconstruction, outcome, and clustering losses.
We demonstrate the model performance on $29,229$ diabetes patients, showing it finds clusters of patients with both different trajectories and different outcomes.
arXiv Detail & Related papers (2021-11-11T11:21:39Z) - Deep Semi-Supervised Embedded Clustering (DSEC) for Stratification of
Heart Failure Patients [50.48904066814385]
In this work we apply deep semi-supervised embedded clustering to determine data-driven patient subgroups of heart failure.
We find clinically relevant clusters from an embedded space derived from heterogeneous data.
The proposed algorithm can potentially find new undiagnosed subgroups of patients that have different outcomes.
arXiv Detail & Related papers (2020-12-24T12:56:46Z) - Phenotyping Clusters of Patient Trajectories suffering from Chronic
Complex Disease [3.1564542805009332]
We evaluate three different clustering models on a large hospital dataset of vital-sign observations from patients suffering from COPD.
We propose novel modifications to deal with unevenly sampled time-series data and unbalanced class distribution to improve phenotype separation.
arXiv Detail & Related papers (2020-11-17T01:18:33Z) - Multi-objective semi-supervised clustering to identify health service
patterns for injured patients [37.19379872580349]
Grouping is based on distinctive patterns in health service use within the first week post-injury.
The groups also provide predictive information towards the total cost of medication process.
arXiv Detail & Related papers (2020-11-16T06:43:21Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
We develop a deep learning approach for clustering time-series data, where each cluster comprises patients who share similar future outcomes of interest.
Experiments on two real-world datasets show that our model achieves superior clustering performance over state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-06-15T20:48:43Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.