Identifying latent disease factors differently expressed in patient subgroups using group factor analysis
- URL: http://arxiv.org/abs/2410.07890v1
- Date: Thu, 10 Oct 2024 13:12:14 GMT
- Title: Identifying latent disease factors differently expressed in patient subgroups using group factor analysis
- Authors: Fabio S. Ferreira, John Ashburner, Arabella Bouzigues, Chatrin Suksasilp, Lucy L. Russell, Phoebe H. Foster, Eve Ferry-Bolder, John C. van Swieten, Lize C. Jiskoot, Harro Seelaar, Raquel Sanchez-Valle, Robert Laforce, Caroline Graff, Daniela Galimberti, Rik Vandenberghe, Alexandre de Mendonca, Pietro Tiraboschi, Isabel Santana, Alexander Gerhard, Johannes Levin, Sandro Sorbi, Markus Otto, Florence Pasquier, Simon Ducharme, Chris R. Butler, Isabelle Le Ber, Elizabeth Finger, Maria C. Tartaglia, Mario Masellis, James B. Rowe, Matthis Synofzik, Fermin Moreno, Barbara Borroni, Samuel Kaski, Jonathan D. Rohrer, Janaina Mourao-Miranda,
- Abstract summary: We propose a novel approach to uncover subgroup-specific and subgroup-common latent factors.
The proposed approach, sparse Group Factor Analysis (GFA) with regularised horseshoe priors, was implemented with probabilistic programming.
- Score: 54.67330718129736
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we propose a novel approach to uncover subgroup-specific and subgroup-common latent factors addressing the challenges posed by the heterogeneity of neurological and mental disorders, which hinder disease understanding, treatment development, and outcome prediction. The proposed approach, sparse Group Factor Analysis (GFA) with regularised horseshoe priors, was implemented with probabilistic programming and can uncover associations (or latent factors) among multiple data modalities differentially expressed in sample subgroups. Synthetic data experiments showed the robustness of our sparse GFA by correctly inferring latent factors and model parameters. When applied to the Genetic Frontotemporal Dementia Initiative (GENFI) dataset, which comprises patients with frontotemporal dementia (FTD) with genetically defined subgroups, the sparse GFA identified latent disease factors differentially expressed across the subgroups, distinguishing between "subgroup-specific" latent factors within homogeneous groups and "subgroup common" latent factors shared across subgroups. The latent disease factors captured associations between brain structure and non-imaging variables (i.e., questionnaires assessing behaviour and disease severity) across the different genetic subgroups, offering insights into disease profiles. Importantly, two latent factors were more pronounced in the two more homogeneous FTD patient subgroups (progranulin (GRN) and microtubule-associated protein tau (MAPT) mutation), showcasing the method's ability to reveal subgroup-specific characteristics. These findings underscore the potential of sparse GFA for integrating multiple data modalities and identifying interpretable latent disease factors that can improve the characterization and stratification of patients with neurological and mental health disorders.
Related papers
- Data-driven subgrouping of patient trajectories with chronic diseases: Evidence from low back pain [18.837597864085865]
We propose a novel mixture hidden Markov model for subgrouping patient trajectories from chronic diseases.
Our model is probabilistic and carefully designed to capture different trajectory phases of chronic diseases.
We show that our subgrouping framework outperforms common baselines in terms of cluster validity indices.
arXiv Detail & Related papers (2024-04-16T14:05:29Z) - Federated unsupervised random forest for privacy-preserving patient
stratification [0.4499833362998487]
We introduce a novel multi-omics clustering approach utilizing unsupervised random-forests.
We have validated our approach on machine learning benchmark data sets and on cancer data from The Cancer Genome Atlas.
Our method is competitive with the state-of-the-art in terms of disease subtyping, but at the same time substantially improves the cluster interpretability.
arXiv Detail & Related papers (2024-01-29T12:04:14Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - The Role of Subgroup Separability in Group-Fair Medical Image
Classification [18.29079361470428]
We find a relationship between subgroup separability, subgroup disparities, and performance degradation when models are trained on data with systematic bias such as underdiagnosis.
Our findings shed new light on the question of how models become biased, providing important insights for the development of fair medical imaging AI.
arXiv Detail & Related papers (2023-07-06T06:06:47Z) - Gene-SGAN: a method for discovering disease subtypes with imaging and
genetic signatures via multi-view weakly-supervised deep clustering [6.79528256151419]
Gene-SGAN is a multi-view, weakly-supervised deep clustering method.
It dissects disease heterogeneity by jointly considering phenotypic and genetic data.
Gene-SGAN is broadly applicable to disease subtyping and endophenotype discovery.
arXiv Detail & Related papers (2023-01-25T10:08:30Z) - Composite Feature Selection using Deep Ensembles [130.72015919510605]
We investigate the problem of discovering groups of predictive features without predefined grouping.
We introduce a novel deep learning architecture that uses an ensemble of feature selection models to find predictive groups.
We propose a new metric to measure similarity between discovered groups and the ground truth.
arXiv Detail & Related papers (2022-11-01T17:49:40Z) - Data-IQ: Characterizing subgroups with heterogeneous outcomes in tabular
data [81.43750358586072]
We propose Data-IQ, a framework to systematically stratify examples into subgroups with respect to their outcomes.
We experimentally demonstrate the benefits of Data-IQ on four real-world medical datasets.
arXiv Detail & Related papers (2022-10-24T08:57:55Z) - Deep Semi-Supervised Embedded Clustering (DSEC) for Stratification of
Heart Failure Patients [50.48904066814385]
In this work we apply deep semi-supervised embedded clustering to determine data-driven patient subgroups of heart failure.
We find clinically relevant clusters from an embedded space derived from heterogeneous data.
The proposed algorithm can potentially find new undiagnosed subgroups of patients that have different outcomes.
arXiv Detail & Related papers (2020-12-24T12:56:46Z) - Recommendations for Bayesian hierarchical model specifications for
case-control studies in mental health [0.0]
Researchers must choose whether to assume all subjects are drawn from a common population, or to model them as deriving from separate populations.
We ran systematic simulations on synthetic multi-group behavioural data from a commonly used bandit task.
We found that fitting groups separately provided the most accurate and robust inference across all conditions.
arXiv Detail & Related papers (2020-11-03T14:19:59Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems.
Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE)
This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses.
arXiv Detail & Related papers (2020-06-14T14:50:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.