Exploring Post Quantum Cryptography with Quantum Key Distribution for Sustainable Mobile Network Architecture Design
- URL: http://arxiv.org/abs/2404.10602v1
- Date: Tue, 16 Apr 2024 14:28:08 GMT
- Title: Exploring Post Quantum Cryptography with Quantum Key Distribution for Sustainable Mobile Network Architecture Design
- Authors: Sanzida Hoque, Abdullah Aydeger, Engin Zeydan,
- Abstract summary: The proliferation of mobile networks and their increasing importance to modern life, combined with the emerging threat of quantum computing, present new challenges and opportunities for cybersecurity.
This paper addresses the complexity of protecting these critical infrastructures against future quantum attacks while considering operational sustainability.
- Score: 1.0230631028817565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of mobile networks and their increasing importance to modern life, combined with the emerging threat of quantum computing, present new challenges and opportunities for cybersecurity. This paper addresses the complexity of protecting these critical infrastructures against future quantum attacks while considering operational sustainability. We begin with an overview of the current landscape, identify the main vulnerabilities in mobile networks, and evaluate existing security solutions with new post-quantum cryptography (PQC) methods. We then present a quantum-secure architecture with PQC and Quantum Key Distribution (QKD) tailored explicitly for sustainable mobile networks and illustrate its applicability with several use cases that emphasize the need for advanced protection measures in this new era. In addition, a comprehensive analysis of PQC algorithm families is presented, focusing on their suitability for integration in mobile environments, with particular attention to the trade-offs between energy consumption and security improvements. Finally, recommendations for strengthening mobile networks against quantum threats are provided through a detailed examination of current challenges and opportunities.
Related papers
- Security Vulnerabilities in Quantum Cloud Systems: A Survey on Emerging Threats [0.0]
Quantum computing is becoming increasingly widespread due to the potential and capabilities to solve complex problems beyond the scope of classical computers.
However, the inherent vulnerabilities of these environments pose significant security concerns.
This survey delivers a comprehensive analysis of the security challenges that emerged in quantum cloud systems.
arXiv Detail & Related papers (2025-04-27T01:01:36Z) - Quantum-Safe integration of TLS in SDN networks [0.0]
transition to quantum-safe cryptography within the next decade is critical.
We have selected Transport Layer Security as the foundation to hybridize classical, quantum, and post-quantum cryptography.
The performance of this approach has been demonstrated using a deployed production infrastructure.
arXiv Detail & Related papers (2025-02-24T14:35:56Z) - Quantum-driven Zero Trust Framework with Dynamic Anomaly Detection in 7G Technology: A Neural Network Approach [0.0]
We propose the Quantum Neural Network-Enhanced Zero Trust Framework (QNN-ZTF) for enhanced security.
We integrate Zero Trust Architecture, Intrusion Detection Systems, and Quantum Neural Networks (QNNs) for enhanced security.
We show improved cyber threat mitigation, demonstrating the framework's effectiveness in reducing false positives and response times.
arXiv Detail & Related papers (2025-02-11T18:59:32Z) - Strategic Roadmap for Quantum- Resistant Security: A Framework for Preparing Industries for the Quantum Threat [0.0]
This paper outlines a strategic roadmap for industries to anticipate and mitigate the risks posed by quantum attacks.
By presenting a structured timeline and actionable recommendations, this roadmap with proposed framework prepares industries with the essential strategy to safeguard their potential security threats in the quantum computing era.
arXiv Detail & Related papers (2024-11-15T06:59:41Z) - Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure [0.04096453902709291]
This analysis explores the impact of quantum computing on critical infrastructure and cloud services.
We advocate for proactive security strategies and collaboration between sectors to develop and implement quantum-resistant cryptography.
This blueprint strengthens each area's defenses against potential quantum-induced cyber threats.
arXiv Detail & Related papers (2024-04-16T15:36:23Z) - Navigating Quantum Security Risks in Networked Environments: A Comprehensive Study of Quantum-Safe Network Protocols [1.7887848708497236]
The emergence of quantum computing poses a formidable security challenge to network protocols.
This paper provides an exhaustive analysis of vulnerabilities introduced by quantum computing in a diverse array of widely utilized security protocols.
arXiv Detail & Related papers (2024-04-12T04:20:05Z) - Evaluation Framework for Quantum Security Risk Assessment: A Comprehensive Strategy for Quantum-Safe Transition [0.03749861135832072]
The rise of large-scale quantum computing poses a significant threat to traditional cryptographic security measures.
Quantum attacks undermine current asymmetric cryptographic algorithms, rendering them ineffective.
This study explores the challenges of migrating to quantum-safe cryptographic states.
arXiv Detail & Related papers (2024-04-12T04:18:58Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Towards Quantum-Native Communication Systems: New Developments, Trends,
and Challenges [63.67245855948243]
The survey examines technologies such as quantum-domain (QD) multi-input multi-output (MIMO), QD non-orthogonal multiple access (NOMA), quantum secure direct communication (QSDC)
The current status of quantum sensing, quantum radar, and quantum timing is briefly reviewed in support of future applications.
arXiv Detail & Related papers (2023-11-09T09:45:52Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - Security for Quantum Networks [0.0]
We aim to construct a comprehensive framework for developing and assessing secure quantum networks.
Our work will lead to the development of a hardware-independent framework for securing general quantum networks.
arXiv Detail & Related papers (2021-09-29T00:03:24Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.