論文の概要: Contextrast: Contextual Contrastive Learning for Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2404.10633v1
- Date: Tue, 16 Apr 2024 15:04:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 16:24:42.606443
- Title: Contextrast: Contextual Contrastive Learning for Semantic Segmentation
- Title(参考訳): Contextrast:セマンティックセグメンテーションのためのコンテキストコントラスト学習
- Authors: Changki Sung, Wanhee Kim, Jungho An, Wooju Lee, Hyungtae Lim, Hyun Myung,
- Abstract要約: コントラスト学習に基づくセマンティックセグメンテーション手法であるContextrastを提案する。
提案手法は,文脈コントラスト学習 (CCL) と境界認識型負サンプリング (B) の2つの部分からなる。
我々のContextrastはセマンティックセグメンテーションネットワークの性能を大幅に向上させることを示した。
- 参考スコア(独自算出の注目度): 9.051352746190448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite great improvements in semantic segmentation, challenges persist because of the lack of local/global contexts and the relationship between them. In this paper, we propose Contextrast, a contrastive learning-based semantic segmentation method that allows to capture local/global contexts and comprehend their relationships. Our proposed method comprises two parts: a) contextual contrastive learning (CCL) and b) boundary-aware negative (BANE) sampling. Contextual contrastive learning obtains local/global context from multi-scale feature aggregation and inter/intra-relationship of features for better discrimination capabilities. Meanwhile, BANE sampling selects embedding features along the boundaries of incorrectly predicted regions to employ them as harder negative samples on our contrastive learning, resolving segmentation issues along the boundary region by exploiting fine-grained details. We demonstrate that our Contextrast substantially enhances the performance of semantic segmentation networks, outperforming state-of-the-art contrastive learning approaches on diverse public datasets, e.g. Cityscapes, CamVid, PASCAL-C, COCO-Stuff, and ADE20K, without an increase in computational cost during inference.
- Abstract(参考訳): セマンティックセグメンテーションの大幅な改善にもかかわらず、ローカル/グローバルコンテキストの欠如とそれらの関係により、課題は継続する。
本稿では,ローカル/グローバルなコンテキストをキャプチャし,それらの関係を理解するための,コントラッシブな学習ベースセマンティックセマンティックセマンティックセマンティクス手法であるContextrastを提案する。
提案手法は2つの部分から構成される。
a)文脈コントラスト学習(CCL)と
b) 境界対応陰性(BANE)サンプリング。
文脈的コントラスト学習は、マルチスケールの特徴集約と、より優れた識別能力のための特徴の相互/イントラ関係から局所的/言語的コンテキストを得る。
一方、BANEサンプリングでは、不正確な予測領域の境界に沿って埋め込み特徴を抽出し、それらを対比学習においてより厳しい負のサンプルとして使用し、きめ細かな詳細を利用して境界領域に沿ったセグメンテーション問題を解消する。
我々のContextrastはセマンティックセグメンテーションネットワークの性能を大幅に向上させ、様々な公共データセット、例えばCityscapes, CamVid, PASCAL-C, COCO-Stuff, ADE20Kにおける最先端のコントラスト学習アプローチを、推論の計算コストを増大させることなく向上させることを示した。
関連論文リスト
- Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - Multi-Grained Cross-modal Alignment for Learning Open-vocabulary
Semantic Segmentation from Text Supervision [23.931443799102663]
我々は,高密度アノテーションを使わずに粒度ギャップを埋めるために,MGCA(Multi-Grained Cross-Modal Alignment)フレームワークを導入する。
具体的には、MGCAは画像とテキストのペアに基づいて擬似多言語意味対応を構築する。
提案手法は最先端の手法よりも大幅に進歩し,その有効性と効率性を実証する。
論文 参考訳(メタデータ) (2024-03-06T13:43:36Z) - Associating Spatially-Consistent Grouping with Text-supervised Semantic
Segmentation [117.36746226803993]
テキスト教師付きセマンティックセグメンテーションを用いた自己教師付き空間一貫性グループ化を提案する。
部分的なグループ化結果を考えると、さらに画像レベルから領域レベルへのテキスト教師付きモデルを適用する。
59.2% mIoU と 32.4% mIoU を Pascal VOC および Pascal Context ベンチマークで達成した。
論文 参考訳(メタデータ) (2023-04-03T16:24:39Z) - Context Label Learning: Improving Background Class Representations in
Semantic Segmentation [23.79946807540805]
不均一な背景を持つニューラルネットワークは、対応するコンテキストサンプルを特徴空間内のコンパクトクラスタにマッピングするのに苦労している。
背景クラスを複数のサブクラスに分解することでコンテキスト表現を改善するためにコンテキストラベル学習(CoLab)を提案する。
結果は、CoLabがセグメンテーションモデルをガイドして、背景サンプルのログを決定境界から切り離すことができることを示している。
論文 参考訳(メタデータ) (2022-12-16T11:52:15Z) - Regional Semantic Contrast and Aggregation for Weakly Supervised
Semantic Segmentation [25.231470587575238]
本稿では,意味的セグメンテーションを学習するための地域意味的コントラストとアグリゲーション(RCA)を提案する。
RCAは、訓練データに現れる多種多様なオブジェクトパターンを格納する地域記憶バンクを備えている。
RCAは、きめ細かいセマンティック理解の強い能力を獲得し、最終的には2つの人気のあるベンチマークで新しい最先端の結果を確立する。
論文 参考訳(メタデータ) (2022-03-17T23:29:03Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Boundary Guided Context Aggregation for Semantic Segmentation [23.709865471981313]
我々は、画像の全体的意味理解を促進するために、コンテキストアグリゲーションのための重要なガイダンスとして境界を利用する。
我々はCityscapesとADE20Kデータベースに関する広範な実験を行い、最先端の手法で同等の結果を得る。
論文 参考訳(メタデータ) (2021-10-27T17:04:38Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z) - CTNet: Context-based Tandem Network for Semantic Segmentation [77.4337867789772]
本研究では,空間コンテキスト情報とチャネルコンテキスト情報とを対話的に探索し,新しいコンテキストベースタンデムネットワーク(CTNet)を提案する。
セマンティックセグメンテーションのための学習表現の性能をさらに向上するため、2つのコンテキストモジュールの結果を適応的に統合する。
論文 参考訳(メタデータ) (2021-04-20T07:33:11Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
Semantic Contrastive Learning (SCL) と呼ばれる新しい変種を紹介します。
従来のコントラスト学習とディープクラスタリングの両方の特徴を探求する。
コントラスト学習と深層クラスタリングの強みを統一的なアプローチで増幅することができる。
論文 参考訳(メタデータ) (2021-03-03T20:20:48Z) - Contextual Diversity for Active Learning [9.546771465714876]
大規模なデータセットは、多くの実用化のためにディープ畳み込みニューラルネットワーク(CNN)の使用を制限する。
空間的に共起するクラスに関連した混乱を捉える文脈的多様性の概念を導入する。
本研究は,活発な学習に文脈的多様性を用いることの利点を明らかにした。
論文 参考訳(メタデータ) (2020-08-13T07:04:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。