StyleCity: Large-Scale 3D Urban Scenes Stylization
- URL: http://arxiv.org/abs/2404.10681v2
- Date: Tue, 16 Jul 2024 08:01:22 GMT
- Title: StyleCity: Large-Scale 3D Urban Scenes Stylization
- Authors: Yingshu Chen, Huajian Huang, Tuan-Anh Vu, Ka Chun Shum, Sai-Kit Yeung,
- Abstract summary: StyleCity is a vision-and-text-driven texture stylization system for large-scale urban scenes.
StyleCity stylizes a 3D textured mesh of a large-scale urban scene in a semantics-aware fashion.
- Score: 16.017767577678253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Creating large-scale virtual urban scenes with variant styles is inherently challenging. To facilitate prototypes of virtual production and bypass the need for complex materials and lighting setups, we introduce the first vision-and-text-driven texture stylization system for large-scale urban scenes, StyleCity. Taking an image and text as references, StyleCity stylizes a 3D textured mesh of a large-scale urban scene in a semantics-aware fashion and generates a harmonic omnidirectional sky background. To achieve that, we propose to stylize a neural texture field by transferring 2D vision-and-text priors to 3D globally and locally. During 3D stylization, we progressively scale the planned training views of the input 3D scene at different levels in order to preserve high-quality scene content. We then optimize the scene style globally by adapting the scale of the style image with the scale of the training views. Moreover, we enhance local semantics consistency by the semantics-aware style loss which is crucial for photo-realistic stylization. Besides texture stylization, we further adopt a generative diffusion model to synthesize a style-consistent omnidirectional sky image, which offers a more immersive atmosphere and assists the semantic stylization process. The stylized neural texture field can be baked into an arbitrary-resolution texture, enabling seamless integration into conventional rendering pipelines and significantly easing the virtual production prototyping process. Extensive experiments demonstrate our stylized scenes' superiority in qualitative and quantitative performance and user preferences.
Related papers
- HoloDreamer: Holistic 3D Panoramic World Generation from Text Descriptions [31.342899807980654]
3D scene generation is in high demand across various domains, including virtual reality, gaming, and the film industry.
We introduce HoloDreamer, a framework that first generates high-definition panorama as a holistic initialization of the full 3D scene.
We then leverage 3D Gaussian Splatting (3D-GS) to quickly reconstruct the 3D scene, thereby facilitating the creation of view-consistent and fully enclosed 3D scenes.
arXiv Detail & Related papers (2024-07-21T14:52:51Z) - StyleSplat: 3D Object Style Transfer with Gaussian Splatting [0.3374875022248866]
Style transfer can enhance 3D assets with diverse artistic styles, transforming creative expression.
We introduce StyleSplat, a method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images.
We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
arXiv Detail & Related papers (2024-07-12T17:55:08Z) - Stylizing Sparse-View 3D Scenes with Hierarchical Neural Representation [0.0]
A surge of 3D style transfer methods has been proposed that leverage the scene reconstruction power of a pre-trained neural radiance field (NeRF)
In this paper, we consider the stylization of sparse-view scenes in terms of disentangling content semantics and style textures.
A novel hierarchical encoding-based neural representation is designed to generate high-quality stylized scenes directly from implicit scene representations.
arXiv Detail & Related papers (2024-04-08T07:01:42Z) - Style-Consistent 3D Indoor Scene Synthesis with Decoupled Objects [84.45345829270626]
Controllable 3D indoor scene synthesis stands at the forefront of technological progress.
Current methods for scene stylization are limited to applying styles to the entire scene.
We introduce a unique pipeline designed for synthesis 3D indoor scenes.
arXiv Detail & Related papers (2024-01-24T03:10:36Z) - Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion [77.34078223594686]
We propose a novel architecture for direct 3D scene generation by introducing diffusion models into 3D sparse representations and combining them with neural rendering techniques.
Specifically, our approach generates texture colors at the point level for a given geometry using a 3D diffusion model first, which is then transformed into a scene representation in a feed-forward manner.
Experiments in two city-scale datasets show that our model demonstrates proficiency in generating photo-realistic street-view image sequences and cross-view urban scenes from satellite imagery.
arXiv Detail & Related papers (2024-01-19T16:15:37Z) - TextureDreamer: Image-guided Texture Synthesis through Geometry-aware
Diffusion [64.49276500129092]
TextureDreamer is an image-guided texture synthesis method.
It can transfer relightable textures from a small number of input images to target 3D shapes across arbitrary categories.
arXiv Detail & Related papers (2024-01-17T18:55:49Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets.
We introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text.
arXiv Detail & Related papers (2023-12-13T18:59:30Z) - S2RF: Semantically Stylized Radiance Fields [1.243080988483032]
We present our method for transferring style from any arbitrary image(s) to object(s) within a 3D scene.
Our primary objective is to offer more control in 3D scene stylization, facilitating the creation of customizable and stylized scene images from arbitrary viewpoints.
arXiv Detail & Related papers (2023-09-03T19:32:49Z) - NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion
Models [85.20004959780132]
We introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments.
We show how NeuralField-LDM can be used for a variety of 3D content creation applications, including conditional scene generation, scene inpainting and scene style manipulation.
arXiv Detail & Related papers (2023-04-19T16:13:21Z) - StyleMesh: Style Transfer for Indoor 3D Scene Reconstructions [11.153966202832933]
We apply style transfer on mesh reconstructions of indoor scenes.
This enables VR applications like experiencing 3D environments painted in the style of a favorite artist.
arXiv Detail & Related papers (2021-12-02T18:59:59Z) - Learning to Stylize Novel Views [82.24095446809946]
We tackle a 3D scene stylization problem - generating stylized images of a scene from arbitrary novel views.
We propose a point cloud-based method for consistent 3D scene stylization.
arXiv Detail & Related papers (2021-05-27T23:58:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.