論文の概要: Bootstrapping Linear Models for Fast Online Adaptation in Human-Agent Collaboration
- arxiv url: http://arxiv.org/abs/2404.10733v1
- Date: Tue, 16 Apr 2024 17:05:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 15:55:23.553385
- Title: Bootstrapping Linear Models for Fast Online Adaptation in Human-Agent Collaboration
- Title(参考訳): 人間-エージェント協調における高速オンライン適応のための線形モデルのブートストラップ
- Authors: Benjamin A Newman, Chris Paxton, Kris Kitani, Henny Admoni,
- Abstract要約: そこで我々は,BLR-HAC,自己資金による人的エージェント協調のためのロジスティック回帰を提案する。
大規模な非線形モデルをブートストラップして低容量モデルのパラメータを学習し、コラボレーション中の更新にオンラインロジスティック回帰を使用する。
浅い手法よりもゼロショット精度が高く、オンラインに適応する時間もはるかに少なく、微調整された大きな非線形モデルと同じような性能を保っている。
- 参考スコア(独自算出の注目度): 33.38435354359928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agents that assist people need to have well-initialized policies that can adapt quickly to align with their partners' reward functions. Initializing policies to maximize performance with unknown partners can be achieved by bootstrapping nonlinear models using imitation learning over large, offline datasets. Such policies can require prohibitive computation to fine-tune in-situ and therefore may miss critical run-time information about a partner's reward function as expressed through their immediate behavior. In contrast, online logistic regression using low-capacity models performs rapid inference and fine-tuning updates and thus can make effective use of immediate in-task behavior for reward function alignment. However, these low-capacity models cannot be bootstrapped as effectively by offline datasets and thus have poor initializations. We propose BLR-HAC, Bootstrapped Logistic Regression for Human Agent Collaboration, which bootstraps large nonlinear models to learn the parameters of a low-capacity model which then uses online logistic regression for updates during collaboration. We test BLR-HAC in a simulated surface rearrangement task and demonstrate that it achieves higher zero-shot accuracy than shallow methods and takes far less computation to adapt online while still achieving similar performance to fine-tuned, large nonlinear models. For code, please see our project page https://sites.google.com/view/blr-hac.
- Abstract(参考訳): 人々を支援するエージェントは、パートナーの報酬機能に合わせて迅速に適応できる、十分に初期化されたポリシーを持つ必要がある。
未知のパートナーによるパフォーマンスを最大化するためのポリシーの初期化は、大規模なオフラインデータセット上の模倣学習を使用して非線形モデルをブートストラップすることで達成できる。
このようなポリシーは、その場で微調整するために禁止的な計算を必要とするため、パートナーの即時行動によって表現される報酬関数に関する重要な実行時情報を見逃す可能性がある。
対照的に、低容量モデルを用いたオンラインロジスティック回帰は、高速な推論と微調整の更新を行うため、報奨関数のアライメントに即時的なタスク動作を効果的に利用することができる。
しかし、これらの低容量モデルはオフラインデータセットによって効果的にブートストラップすることはできないため、初期化が不十分である。
本稿では,BLR-HAC,Bootstrapped Logistic Regression for Human Agent Collaborationを提案する。
我々は,BLR-HACを模擬表面再構成タスクでテストし,浅い手法よりも高いゼロショット精度を実現し,細調整された大規模非線形モデルに類似した性能を保ちながら,オンラインで適応する計算をはるかに少なくすることを示した。
コードについては、プロジェクトのページ https://sites.google.com/view/blr-hac をご覧ください。
関連論文リスト
- Distributional Successor Features Enable Zero-Shot Policy Optimization [36.53356539916603]
本研究は、ゼロショットポリシー最適化のための分散継承機能(DiSPO)という、新しいモデルのクラスを提案する。
DiSPOは、定常データセットの行動ポリシーの後継機能の分布と、データセット内で達成可能な異なる後継機能を実現するためのポリシーを学ぶ。
データセットの長期的な結果を直接モデル化することにより、DiSPOは、報酬関数をまたいだゼロショットポリシー最適化のための単純なスキームを実現しつつ、複雑なエラーを避けることができる。
論文 参考訳(メタデータ) (2024-03-10T22:27:21Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline
Pre-Training with Model Based Augmentation [59.899714450049494]
オフラインの事前トレーニングは、準最適ポリシーを生成し、オンライン強化学習のパフォーマンスを低下させる可能性がある。
本稿では,オフライン強化学習による事前学習のメリットを最大化し,有効となるために必要なデータの規模を削減するためのモデルベースデータ拡張戦略を提案する。
論文 参考訳(メタデータ) (2023-12-15T14:49:41Z) - Finetuning Offline World Models in the Real World [13.46766121896684]
強化学習(RL)はデータ非効率で、実際のロボットの訓練を困難にしている。
オフラインのRLは、オンラインインタラクションなしで既存のデータセットのRLポリシーをトレーニングするためのフレームワークとして提案されている。
本研究では,実ロボットで収集したオフラインデータを用いて世界モデルを事前学習し,学習モデルを用いて計画して収集したオンラインデータ上でモデルを微調整する問題を考察する。
論文 参考訳(メタデータ) (2023-10-24T17:46:12Z) - Causal Decision Transformer for Recommender Systems via Offline
Reinforcement Learning [23.638418776700522]
我々は、リコメンデータシステムのための因果決定変換器(CDT4Rec)という新しいモデルを提案する。
CDT4Recはオフラインの強化学習システムで、オンラインインタラクションではなくデータセットから学習することができる。
本モデルの有効性と優位性を示すため、6つの実世界のオフラインデータセットと1つのオンラインシミュレータの実験を行った。
論文 参考訳(メタデータ) (2023-04-17T00:05:52Z) - Offline Q-Learning on Diverse Multi-Task Data Both Scales And
Generalizes [100.69714600180895]
オフラインのQ-ラーニングアルゴリズムは、モデルキャパシティでスケールする強力なパフォーマンスを示す。
最大8000万のパラメータネットワークを用いて,40のゲームに対してほぼ人間に近いパフォーマンスで1つのポリシーをトレーニングする。
リターン条件付き教師付きアプローチと比較して、オフラインQラーニングはモデルキャパシティと同様にスケールし、特にデータセットが最適以下である場合にはパフォーマンスが向上する。
論文 参考訳(メタデータ) (2022-11-28T08:56:42Z) - Mismatched No More: Joint Model-Policy Optimization for Model-Based RL [172.37829823752364]
本稿では,モデルとポリシーを共同でトレーニングする単一目的について提案する。
我々の目標は、期待されるリターンのグローバルな低い境界であり、この境界は特定の仮定の下で厳密になる。
結果のアルゴリズム(MnM)は概念的にはGANと似ている。
論文 参考訳(メタデータ) (2021-10-06T13:43:27Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
提案手法は,従来の実演データとオンライン体験を組み合わせることで,スキルの素早い学習を可能にする。
以上の結果から,事前データを組み込むことで,ロボット工学を実践的な時間スケールまで学習するのに要する時間を短縮できることが示唆された。
論文 参考訳(メタデータ) (2020-06-16T17:54:41Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
オフライン強化学習(英語: offline reinforcement learning, RL)とは、以前に収集された大量のデータから完全に学習ポリシーを学習する問題を指す。
既存のモデルベースRLアルゴリズムは,すでにオフライン設定において大きな利益を上げていることを示す。
本稿では,既存のモデルに基づくRL法を,力学の不確実性によって人為的に罰せられる報酬で適用することを提案する。
論文 参考訳(メタデータ) (2020-05-27T08:46:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。