論文の概要: Achieving Constant Regret in Linear Markov Decision Processes
- arxiv url: http://arxiv.org/abs/2404.10745v2
- Date: Thu, 12 Dec 2024 17:42:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 17:01:14.200413
- Title: Achieving Constant Regret in Linear Markov Decision Processes
- Title(参考訳): 線形マルコフ決定過程における定数レグレットの達成
- Authors: Weitong Zhang, Zhiyuan Fan, Jiafan He, Quanquan Gu,
- Abstract要約: 我々は不特定線形マルコフ決定過程(MDP)に対するアルゴリズムCert-LSVI-UCBを導入する。
Cert-LSVI-UCB は $tildemathcalO(d3H5/Delta)$ の累積後悔を高い確率で示し、不特定度 $zeta$ が $tildemathcalO(Delta / (sqrtdH2))$ 以下であることを示す。
- 参考スコア(独自算出の注目度): 57.34287648914407
- License:
- Abstract: We study the constant regret guarantees in reinforcement learning (RL). Our objective is to design an algorithm that incurs only finite regret over infinite episodes with high probability. We introduce an algorithm, Cert-LSVI-UCB, for misspecified linear Markov decision processes (MDPs) where both the transition kernel and the reward function can be approximated by some linear function up to misspecification level $\zeta$. At the core of Cert-LSVI-UCB is an innovative \method, which facilitates a fine-grained concentration analysis for multi-phase value-targeted regression, enabling us to establish an instance-dependent regret bound that is constant w.r.t. the number of episodes. Specifically, we demonstrate that for a linear MDP characterized by a minimal suboptimality gap $\Delta$, Cert-LSVI-UCB has a cumulative regret of $\tilde{\mathcal{O}}(d^3H^5/\Delta)$ with high probability, provided that the misspecification level $\zeta$ is below $\tilde{\mathcal{O}}(\Delta / (\sqrt{d}H^2))$. Here $d$ is the dimension of the feature space and $H$ is the horizon. Remarkably, this regret bound is independent of the number of episodes $K$. To the best of our knowledge, Cert-LSVI-UCB is the first algorithm to achieve a constant, instance-dependent, high-probability regret bound in RL with linear function approximation without relying on prior distribution assumptions.
- Abstract(参考訳): 強化学習(RL)における絶え間ない後悔の保証について検討した。
我々の目的は、確率の高い無限エピソードに対して有限後悔しか生じないアルゴリズムを設計することである。
そこで我々は,遷移カーネルと報酬関数の両方を,不特定値$\zeta$までの線形関数で近似できる,不特定線形マルコフ決定過程(MDP)のアルゴリズムCert-LSVI-UCBを導入する。
Cert-LSVI-UCB のコアは革新的 \method であり、多相値目標回帰の微細な濃度解析を容易にし、エピソード数に対して一定となるインスタンス依存の後悔境界を確立することができる。
具体的には、最小限の最適性ギャップ$\Delta$を特徴とする線形 MDP に対して、Cert-LSVI-UCB は $\tilde{\mathcal{O}}(d^3H^5/\Delta)$ を高い確率で累積後悔し、不特定度 $\zeta$ が $\tilde{\mathcal{O}}(\Delta / (\sqrt{d}H^2))$ 以下であることを証明している。
ここで$d$は特徴空間の次元であり、$H$は地平線である。
興味深いことに、この後悔の限界は、エピソード数$K$とは無関係である。
我々の知る限り、Cert-LSVI-UCBは、事前分布仮定に頼ることなく線形関数近似でRLに拘束される定数、インスタンス依存、高確率の後悔を実現する最初のアルゴリズムである。
関連論文リスト
- Provably Efficient CVaR RL in Low-rank MDPs [58.58570425202862]
リスクに敏感な強化学習(RL)について検討する。
本稿では, CVaR RLにおける探索, 搾取, 表現学習の相互作用のバランスをとるための, 新たなアッパー信頼境界(UCB)ボーナス駆動アルゴリズムを提案する。
提案アルゴリズムは,各エピソードの長さが$H$,アクション空間が$A$,表現の次元が$d$であるような,エプシロン$最適CVaRのサンプル複雑性を実現する。
論文 参考訳(メタデータ) (2023-11-20T17:44:40Z) - Learning Adversarial Low-rank Markov Decision Processes with Unknown
Transition and Full-information Feedback [30.23951525723659]
本研究は,全情報フィードバック設定において,逆向きに損失が変化する低ランクMDPについて検討する。
政策最適化に基づくアルゴリズムPOLOを提案し、$widetildeO(Kfrac56Afrac12dln (1+M)/ (1-gamma)2)$ regret guarantee。
論文 参考訳(メタデータ) (2023-11-14T03:12:43Z) - Bilinear Exponential Family of MDPs: Frequentist Regret Bound with
Tractable Exploration and Planning [0.0]
本研究では,不確実な報酬と遷移を伴う連続状態行動空間におけるエピソード強化学習の課題について検討する。
我々は,未知のパラメータを学習するために,ペナライズされた最大確率推定器を用いたアルゴリズムBEF-RLSVIを提案する。
論文 参考訳(メタデータ) (2022-10-05T08:26:49Z) - Provably Efficient Model-Free Constrained RL with Linear Function
Approximation [4.060731229044571]
我々は,大規模システムにおいても,サブリニア後悔とサブリニア制約違反を実現するための,最初のモデルフリーシミュレータフリーアルゴリズムを開発した。
本結果は,標準LSVI-UCBアルゴリズムの新たな適応により達成される。
論文 参考訳(メタデータ) (2022-06-23T17:54:31Z) - Nearly Minimax Optimal Reinforcement Learning with Linear Function
Approximation [25.60689712525918]
本稿では,遷移確率と報酬関数が線形な線形関数近似を用いた強化学習について検討する。
本稿では,新たなアルゴリズムLSVI-UCB$+$を提案し,$H$がエピソード長,$d$が特徴次元,$T$がステップ数である場合に,$widetildeO(HdsqrtT)$ regretboundを実現する。
論文 参考訳(メタデータ) (2022-06-23T06:04:21Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
漸進的強化学習における後悔を最小限に抑えるために,新しいモデルフリーアルゴリズムを提案する。
提案アルゴリズムは、2つのQ-ラーニングシーケンスの助けを借りて、初期設定された参照更新ルールを用いる。
初期の分散還元法の設計原理は、他のRL設定とは独立した関心を持つかもしれない。
論文 参考訳(メタデータ) (2021-10-09T21:13:48Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
本稿では,ランダム化最小二乗値反復(RLSVI)アルゴリズムに着想を得たモデルレス強化学習アルゴリズムを提案する。
提案アルゴリズムは,スカラーノイズを用いたトレーニングデータを簡易に摂動させることにより,探索を促進する。
我々はこの理論を、既知の困難な探査課題にまたがる実証的な評価で補完する。
論文 参考訳(メタデータ) (2021-06-15T02:23:07Z) - Efficient Learning in Non-Stationary Linear Markov Decision Processes [17.296084954104415]
非定常線形(低ランク)マルコフ決定過程(MDP)におけるエピソード強化学習の研究
OPT-WLSVI は最小二乗の重み付け値に基づく楽観的なモデルフリーのアルゴリズムであり、指数重み付けを用いて過去のデータをスムーズに忘れる。
我々のアルゴリズムは、各時点で最高のポリシーと競合するときに、$d$$$widetildemathcalO(d5/4H2 Delta1/4 K3/4)$で上限付けられた後悔を実現する。
論文 参考訳(メタデータ) (2020-10-24T11:02:45Z) - Kernel-Based Reinforcement Learning: A Finite-Time Analysis [53.47210316424326]
モデルに基づく楽観的アルゴリズムであるKernel-UCBVIを導入する。
スパース報酬を伴う連続MDPにおける我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2020-04-12T12:23:46Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
マルコフ決定過程(CMDP)に対するオンライン学習の検討
本稿では,遷移モデルから標本化した軌跡のみを必要とする,新しいEmphupper confidence primal-dualアルゴリズムを提案する。
我々の分析では、ラグランジュ乗算過程の新たな高確率ドリフト解析を、高信頼強化学習の記念後悔解析に組み入れている。
論文 参考訳(メタデータ) (2020-03-02T05:02:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。