論文の概要: Sustainability of Data Center Digital Twins with Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2404.10786v1
- Date: Tue, 16 Apr 2024 18:22:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 18:22:00.996237
- Title: Sustainability of Data Center Digital Twins with Reinforcement Learning
- Title(参考訳): 強化学習によるデータセンターデジタル双生児の持続可能性
- Authors: Soumyendu Sarkar, Avisek Naug, Antonio Guillen, Ricardo Luna, Vineet Gundecha, Ashwin Ramesh Babu, Sajad Mousavi,
- Abstract要約: 機械学習(ML)は、計算能力の需要が増大し、データセンター(DC)が大きくなり、エネルギー消費が増加した。
この問題に対処し、二酸化炭素排出量を減らすために、ITサーバ、キャビネット、HVAC冷却、柔軟な負荷シフト、バッテリーエネルギー貯蔵といったDCコンポーネントの設計と制御が不可欠である。
DCRL-GreenはマルチエージェントのRL環境であり、MLコミュニティがデータセンターを設計し、DCの炭素フットプリント削減のためのRLコントローラを開発し、改良することを可能にする。
- 参考スコア(独自算出の注目度): 2.4971633082970377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of machine learning (ML) has led to an increased demand for computational power, resulting in larger data centers (DCs) and higher energy consumption. To address this issue and reduce carbon emissions, intelligent design and control of DC components such as IT servers, cabinets, HVAC cooling, flexible load shifting, and battery energy storage are essential. However, the complexity of designing and controlling them in tandem presents a significant challenge. While some individual components like CFD-based design and Reinforcement Learning (RL) based HVAC control have been researched, there's a gap in the holistic design and optimization covering all elements simultaneously. To tackle this, we've developed DCRL-Green, a multi-agent RL environment that empowers the ML community to design data centers and research, develop, and refine RL controllers for carbon footprint reduction in DCs. It is a flexible, modular, scalable, and configurable platform that can handle large High Performance Computing (HPC) clusters. Furthermore, in its default setup, DCRL-Green provides a benchmark for evaluating single as well as multi-agent RL algorithms. It easily allows users to subclass the default implementations and design their own control approaches, encouraging community development for sustainable data centers. Open Source Link: https://github.com/HewlettPackard/dc-rl
- Abstract(参考訳): 機械学習(ML)の急速な成長により、計算能力の需要が増加し、データセンター(DC)が大きくなり、エネルギー消費が増加した。
この問題に対処し、二酸化炭素排出量を減らすために、ITサーバ、キャビネット、HVAC冷却、柔軟な負荷シフト、バッテリーエネルギー貯蔵といったDCコンポーネントの設計と制御が不可欠である。
しかし、それらをタンデムで設計し、制御することの複雑さは、重大な課題である。
CFDベースのデザインや強化学習(Reinforcement Learning, RL)ベースのHVACコントロールなどの個々のコンポーネントが研究されているが、すべての要素を同時にカバーする全体設計と最適化にはギャップがある。
DCRL-GreenはMLコミュニティがデータセンターを設計し、DCにおける炭素フットプリント削減のためのRLコントローラを開発し、改良することを可能にするマルチエージェントRL環境である。
柔軟性があり、モジュール化され、スケーラブルで、構成可能なプラットフォームで、大規模なHPC(High Performance Computing)クラスタを処理できる。
さらに、デフォルト設定では、DCRL-GreenはシングルおよびマルチエージェントRLアルゴリズムを評価するためのベンチマークを提供する。
これにより、ユーザはデフォルトの実装をサブクラス化し、独自のコントロールアプローチを設計し、持続可能なデータセンターのためのコミュニティ開発を奨励できる。
オープンソースリンク:https://github.com/HewlettPackard/dc-rl
関連論文リスト
- Communication-Control Codesign for Large-Scale Wireless Networked Control Systems [80.30532872347668]
無線ネットワーク制御システム(Wireless Networked Control Systems, WNCS)は、ドローン群や自律ロボットなどのアプリケーションにおいて柔軟な制御を可能にする産業用4.0に必須である。
本稿では,マルチ状態マルコフブロックフェーディングチャネル上で限られた無線リソースを共有するセンサやアクチュエータを用いて,複数の制御ループ間の相関ダイナミクスを捕捉する実用的WNCSモデルを提案する。
本研究では,ハイブリッドな動作空間を効率的に処理し,通信制御の相関関係を捉え,疎域変数や浮動小数点制御の入力に拘わらず堅牢なトレーニングを確実にするDeep Reinforcement Learning (DRL)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-15T06:28:21Z) - SustainDC: Benchmarking for Sustainable Data Center Control [4.159959816797259]
データセンター(DC)のためのマルチエージェント強化学習(MARL)アルゴリズムをベンチマークするためのPython環境セットであるSustainDCを紹介する。
SustainDCは、ワークロードスケジューリング、冷却最適化、補助バッテリー管理などのカスタムDC構成とタスクをサポートする。
SustainDC上での各種MARLアルゴリズムの評価を行い, 各種DC設計, 位置, 気象条件, グリッドカーボン強度, 負荷負荷条件などを検討した。
論文 参考訳(メタデータ) (2024-08-14T22:43:52Z) - An experimental evaluation of Deep Reinforcement Learning algorithms for HVAC control [40.71019623757305]
近年の研究では、Deep Reinforcement Learning (DRL)アルゴリズムが従来のリアクティブコントローラより優れていることが示されている。
本稿では,HVAC制御のためのいくつかの最先端DRLアルゴリズムについて,批判的かつ再現可能な評価を行う。
論文 参考訳(メタデータ) (2024-01-11T08:40:26Z) - PyDCM: Custom Data Center Models with Reinforcement Learning for Sustainability [2.6429542504022314]
PyDCMは、Pythonで実装されたカスタマイズ可能なデータセンターモデルである。
ベクトル化熱計算を用いることで、PyDCMのオーダーは現在のEnergy Plusのモデリング実装よりも桁違いに速い(30倍)。
論文 参考訳(メタデータ) (2023-10-05T21:24:54Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
強化学習(RL)による制御は、建築エネルギー効率を著しく向上させることが示されている。
我々は、ゼロショットビルディング制御と呼ばれるパラダイムを優先せずに、排出削減ポリシーを得られることを示す。
論文 参考訳(メタデータ) (2022-08-12T17:13:25Z) - Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA NICs [64.26714148634228]
渋滞制御 (CC) アルゴリズムの設計は非常に困難になる。
現在、計算能力に制限があるため、ネットワークデバイスにAIモデルをデプロイすることはできない。
我々は,近年の強化学習CCアルゴリズムに基づく計算軽度解を構築した。
論文 参考訳(メタデータ) (2022-07-05T20:42:24Z) - Deep Reinforcement Learning for Computational Fluid Dynamics on HPC
Systems [17.10464381844892]
強化学習(Reinforcement Learning, RL)は、動的システムの文脈における制御戦略の考案に非常に適している。
近年の研究では、RL強化計算流体力学(CFD)の解法が最先端技術を超えることが示唆されている。
我々は、機械学習とHPCシステム上の最新のCFDソルバ間のギャップを埋めるスケーラブルなRLフレームワークとしてRelexiを提示する。
論文 参考訳(メタデータ) (2022-05-13T08:21:18Z) - ElegantRL-Podracer: Scalable and Elastic Library for Cloud-Native Deep
Reinforcement Learning [141.58588761593955]
クラウドネイティブな深層強化学習のためのライブラリElegantRL-podracerを提案する。
数百万のコアを効率的にサポートし、複数のレベルで大規模な並列トレーニングを実行する。
低レベルでは、各ポッドは1つのGPUで7,000近いGPUコアをフル活用することで、エージェントと環境のインタラクションを並列にシミュレートする。
論文 参考訳(メタデータ) (2021-12-11T06:31:21Z) - Power Modeling for Effective Datacenter Planning and Compute Management [53.41102502425513]
我々は,すべてのハードウェア構成とワークロードに適用可能な,正確でシンプルで解釈可能な統計パワーモデルの設計と検証の2つのクラスについて論じる。
提案された統計的モデリング手法は, 単純かつスケーラブルでありながら, 4つの特徴のみを用いて, 95% 以上の多様な配電ユニット (2000 以上) に対して, 5% 未満の絶対パーセンテージエラー (MAPE) で電力を予測できることを実証した。
論文 参考訳(メタデータ) (2021-03-22T21:22:51Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z) - Integrating Distributed Architectures in Highly Modular RL Libraries [4.297070083645049]
ほとんどの人気のある強化学習ライブラリは、高度にモジュール化されたエージェントの構成性を主張している。
本稿では、RLエージェントを独立した再利用可能なコンポーネントによって異なるスケールで定義できる汎用的アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-06T10:22:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。