Estimating entanglement monotones of non-pure spin-squeezed states
- URL: http://arxiv.org/abs/2504.07814v1
- Date: Thu, 10 Apr 2025 14:51:18 GMT
- Title: Estimating entanglement monotones of non-pure spin-squeezed states
- Authors: Julia Mathé, Ayaka Usui, Otfried Gühne, Giuseppe Vitagliano,
- Abstract summary: We estimate entanglements of general mixed many-body quantum states via lower and upper bounds from entanglement witnesses and separable ansatz states respectively.<n>We derive lower bounds to distance-like measure from the set of fully separable states based on spin-squeezing inequalities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate how to estimate entanglement monotones of general mixed many-body quantum states via lower and upper bounds from entanglement witnesses and separable ansatz states respectively. This allows us to study spin systems on fully-connected graphs at nonzero temperature. We derive lower bounds to distance-like measure from the set of fully separable states based on spin-squeezing inequalities. These are nonlinear expressions based on variances of collective spin operators and are potentially close to optimal in the large particle-number limit, at least for models with two-particle interactions. Concretely, we apply our methods to equilibrium states of the permutation-invariant XXZ model with an external field and investigate entanglement at nonzero temperature close to quantum phase transition (QPT) points in both the ferromagnetic and anti-ferromagnetic cases. We observe that the lower bound becomes tight for zero temperature as well as for the temperature at which entanglement disappears, both of which are thus precisely captured by the spin-squeezing inequalities. We further observe, among other things, that entanglement arises at nonzero temperature close to a QPT even in the ordered phase, where the ground state is separable. This can be considered an entanglement signature of a QPT that may also be visible in experiments.
Related papers
- Thermal Entanglement in Disordered Spin Chains: Localization, Thresholds, and the Quantum-to-Classical Crossover [1.1190363163871757]
We show that mixed-state entanglement is profoundly shaped by both disorder and temperature.
This work advances the understanding of the quantum-to-classical transition by linking the entanglement properties of small subsystems to the broader thermal environment.
arXiv Detail & Related papers (2025-02-26T18:57:38Z) - Strongly interacting fermions are non-trivial yet non-glassy [0.0]
We show that low-temperature strongly interacting fermions, unlike spins, belong in a classically nontrivial yet quantumly easy phase.
Our results suggest that low-temperature strongly interacting fermions, unlike spins, belong in a classically nontrivial yet quantumly easy phase.
arXiv Detail & Related papers (2024-08-28T10:53:51Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Extensive Long-Range Entanglement at Finite Temperatures from a Nonequilibrium Bias [0.0]
We study the entanglement properties of free fermions on a one-dimensional lattice that contains a generic charge- and energy-conserving noninteracting impurity.
We show that all these measures scale linearly with the overlap between one subsystem and the mirror image of the other.
While a simple proportionality relation between the negativity and R'enyi versions of the mutual information is observed to hold at zero temperature, it breaks down at finite temperatures.
arXiv Detail & Related papers (2024-04-16T18:00:16Z) - Quantum concentration inequalities and equivalence of the thermodynamical ensembles: an optimal mass transport approach [4.604003661048267]
We prove new concentration inequalities for quantum spin systems.
Our results do not require the spins to be arranged in a regular lattice.
We introduce a local W1 distance, which quantifies the distinguishability of two states with respect to local observables.
arXiv Detail & Related papers (2024-03-27T14:32:03Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Metastable spin-phase diagrams in antiferromagnetic Bose-Einstein
condensates [0.0]
We study theoretically the metastable spin-phase diagram of a spin-1 antiferromagnetic Bose-Einstein condensate at zero and finite temperatures.
Results are consistent with recent experiments and allow us to explain qualitatively the different types of observed quench dynamics.
arXiv Detail & Related papers (2021-09-05T03:47:59Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.