Methods to Estimate Cryptic Sequence Complexity
- URL: http://arxiv.org/abs/2404.10854v2
- Date: Fri, 31 May 2024 13:59:27 GMT
- Title: Methods to Estimate Cryptic Sequence Complexity
- Authors: Matthew Andres Moreno,
- Abstract summary: We propose three knockout-based assay procedures designed to quantify cryptic adaptive sites within digital genomes.
We report initial tests of these methods on a simple genome model with explicitly configured site fitness effects.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complexity is a signature quality of interest in artificial life systems. Alongside other dimensions of assessment, it is common to quantify genome sites that contribute to fitness as a complexity measure. However, limitations to the sensitivity of fitness assays in models with implicit replication criteria involving rich biotic interactions introduce the possibility of difficult-to-detect ``cryptic'' adaptive sites, which contribute small fitness effects below the threshold of individual detectability or involve epistatic redundancies. Here, we propose three knockout-based assay procedures designed to quantify cryptic adaptive sites within digital genomes. We report initial tests of these methods on a simple genome model with explicitly configured site fitness effects. In these limited tests, estimation results reflect ground truth cryptic sequence complexities well. Presented work provides initial steps toward development of new methods and software tools that improve the resolution, rigor, and tractability of complexity analyses across alife systems, particularly those requiring expensive in situ assessments of organism fitness.
Related papers
- Nonparametric independence tests in high-dimensional settings, with applications to the genetics of complex disease [55.2480439325792]
We show how defining adequate premetric structures on the support spaces of the genetic data allows for novel approaches to such testing.
For each problem, we provide mathematical results, simulations and the application to real data.
arXiv Detail & Related papers (2024-07-29T01:00:53Z) - Interpreting artificial neural networks to detect genome-wide association signals for complex traits [0.0]
Investigating the genetic architecture of complex diseases is challenging due to the highly polygenic and interactive landscape of genetic and environmental factors.
We trained artificial neural networks for predicting complex traits using both simulated and real genotype/phenotype datasets.
arXiv Detail & Related papers (2024-07-26T15:20:42Z) - Physics-informed Neural Network Estimation of Material Properties in Soft Tissue Nonlinear Biomechanical Models [2.8763745263714005]
We propose a new approach which relies on the combination of physics-informed neural networks (PINNs) with three-dimensional soft tissue nonlinear biomechanical models.
The proposed learning algorithm encodes information from a limited amount of displacement and, in some cases, strain data, that can be routinely acquired in the clinical setting.
Several benchmarks are presented to show the accuracy and robustness of the proposed method.
arXiv Detail & Related papers (2023-12-15T13:41:20Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Accurate and Definite Mutational Effect Prediction with Lightweight
Equivariant Graph Neural Networks [2.381587712372268]
This research introduces a lightweight graph representation learning scheme that efficiently analyzes the microenvironment of wild-type proteins.
Our solution offers a wide range of benefits that make it an ideal choice for the community.
arXiv Detail & Related papers (2023-04-13T09:51:49Z) - Automatically Balancing Model Accuracy and Complexity using Solution and
Fitness Evolution (SAFE) [4.149117182410553]
We investigate whether multiple objectives can be dynamically tuned by our proposed coevolutionary algorithm, SAFE (Solution And Fitness Evolution).
We find that SAFE is able to automatically tune accuracy and complexity with no performance loss, as compared with a standard evolutionary algorithm, over complex simulated genetics datasets produced by the GAMETES tool.
arXiv Detail & Related papers (2022-06-30T16:55:33Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - On Restricting Real-Valued Genotypes in Evolutionary Algorithms [1.290382979353427]
We will illustrate the challenge of limiting the parameters of real-valued genomes and analyse the most promising method to properly limit these values.
The proposed method requires minimal intervention from Evolutionary Algorithm practitioners and behaves well under repeated application of variation operators.
arXiv Detail & Related papers (2020-05-19T11:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.