Interpreting artificial neural networks to detect genome-wide association signals for complex traits
- URL: http://arxiv.org/abs/2407.18811v1
- Date: Fri, 26 Jul 2024 15:20:42 GMT
- Title: Interpreting artificial neural networks to detect genome-wide association signals for complex traits
- Authors: Burak Yelmen, Maris Alver, Estonian Biobank Research Team, Flora Jay, Lili Milani,
- Abstract summary: Investigating the genetic architecture of complex diseases is challenging due to the highly polygenic and interactive landscape of genetic and environmental factors.
We trained artificial neural networks for predicting complex traits using both simulated and real genotype/phenotype datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Investigating the genetic architecture of complex diseases is challenging due to the highly polygenic and interactive landscape of genetic and environmental factors. Although genome-wide association studies (GWAS) have identified thousands of variants for multiple complex phenotypes, conventional statistical approaches can be limited by simplified assumptions such as linearity and lack of epistasis models. In this work, we trained artificial neural networks for predicting complex traits using both simulated and real genotype/phenotype datasets. We extracted feature importance scores via different post hoc interpretability methods to identify potentially associated loci (PAL) for the target phenotype. Simulations we performed with various parameters demonstrated that associated loci can be detected with good precision using strict selection criteria, but downstream analyses are required for fine-mapping the exact variants due to linkage disequilibrium, similarly to conventional GWAS. By applying our approach to the schizophrenia cohort in the Estonian Biobank, we were able to detect multiple PAL related to this highly polygenic and heritable disorder. We also performed enrichment analyses with PAL in genic regions, which predominantly identified terms associated with brain morphology. With further improvements in model optimization and confidence measures, artificial neural networks can enhance the identification of genomic loci associated with complex diseases, providing a more comprehensive approach for GWAS and serving as initial screening tools for subsequent functional studies. Keywords: Deep learning, interpretability, genome-wide association studies, complex diseases
Related papers
- Integrating Large Language Models for Genetic Variant Classification [12.244115429231888]
Large Language Models (LLMs) have emerged as transformative tools in genetics.
This study investigates the integration of state-of-the-art LLMs, including GPN-MSA, ESM1b, and AlphaMissense.
Our approach evaluates these integrated models using the well-annotated ProteinGym and ClinVar datasets.
arXiv Detail & Related papers (2024-11-07T13:45:56Z) - An Association Test Based on Kernel-Based Neural Networks for Complex
Genetic Association Analysis [0.8221435109014762]
We develop a kernel-based neural network model (KNN) that synergizes the strengths of linear mixed models with conventional neural networks.
MINQUE-based test to assess the joint association of genetic variants with the phenotype.
Two additional tests to evaluate and interpret linear and non-linear/non-additive genetic effects.
arXiv Detail & Related papers (2023-12-06T05:02:28Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
We introduce the framework of generative flow networks (GFlowNets) to tackle two core problems in phylogenetics: parsimony-based and phylogenetic inference.
Because GFlowNets are well-suited for sampling complex structures, they are a natural choice for exploring and sampling from the multimodal posterior distribution over tree topologies.
We demonstrate that our amortized posterior sampler, PhyloGFN, produces diverse and high-quality evolutionary hypotheses on real benchmark datasets.
arXiv Detail & Related papers (2023-10-12T23:46:08Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
Genome-wide association studies (GWAS) can identify disease susceptible genetic variables.
Genetic variables intertwined with genetic effects often exhibit lower effect-size.
This paper introduces a novel feature selection mechanism for GWAS, named Feature Co-selection Network (FCSNet)
arXiv Detail & Related papers (2023-08-12T01:28:26Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
We propose a new framework for gene discovery entitled Un Phenotype Ensembles.
It builds a redundant yet highly expressive representation by pooling a set of phenotypes learned in an unsupervised manner.
These phenotypes are then analyzed via (GWAS), retaining only highly confident and stable associations.
arXiv Detail & Related papers (2023-01-07T18:36:44Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
We learned machine learning models to predict SNPs using 56 brain imaging QTs.
SNPs within the known Alzheimer disease (AD) risk gene APOE had lowest RMSE for lasso and random forest.
Random forests identified additional SNPs that were not prioritized by the linear models but are known to be associated with brain-related disorders.
arXiv Detail & Related papers (2022-03-31T20:15:22Z) - Expectile Neural Networks for Genetic Data Analysis of Complex Diseases [3.0088453915399747]
We develop an expectile neural network (ENN) method for genetic data analyses of complex diseases.
Similar to expectile regression, ENN provides a comprehensive view of relationships between genetic variants and disease phenotypes.
We show that the proposed method outperformed an existing expectile regression when there exist complex relationships between genetic variants and disease phenotypes.
arXiv Detail & Related papers (2020-10-26T21:07:40Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.