論文の概要: Trackable Agent-based Evolution Models at Wafer Scale
- arxiv url: http://arxiv.org/abs/2404.10861v3
- Date: Sun, 2 Jun 2024 02:22:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 15:18:10.879330
- Title: Trackable Agent-based Evolution Models at Wafer Scale
- Title(参考訳): ウェハスケールにおける追跡可能なエージェントベース進化モデル
- Authors: Matthew Andres Moreno, Connor Yang, Emily Dolson, Luis Zaman,
- Abstract要約: 我々は,85万プロセッサCerebras Wafer Scale Engine(WSE)のエージェントベース進化から系統情報を抽出する問題に焦点をあてる。
We present a asynchronous island-based genetic algorithm (GA) framework for WSE hardware。
本研究は,これらの治験の系統的再構成を検証し,根底にある進化状態の推測に適合することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuing improvements in computing hardware are poised to transform capabilities for in silico modeling of cross-scale phenomena underlying major open questions in evolutionary biology and artificial life, such as transitions in individuality, eco-evolutionary dynamics, and rare evolutionary events. Emerging ML/AI-oriented hardware accelerators, like the 850,000 processor Cerebras Wafer Scale Engine (WSE), hold particular promise. However, practical challenges remain in conducting informative evolution experiments that efficiently utilize these platforms' large processor counts. Here, we focus on the problem of extracting phylogenetic information from agent-based evolution on the WSE platform. This goal drove significant refinements to decentralized in silico phylogenetic tracking, reported here. These improvements yield order-of-magnitude performance improvements. We also present an asynchronous island-based genetic algorithm (GA) framework for WSE hardware. Emulated and on-hardware GA benchmarks with a simple tracking-enabled agent model clock upwards of 1 million generations a minute for population sizes reaching 16 million agents. We validate phylogenetic reconstructions from these trials and demonstrate their suitability for inference of underlying evolutionary conditions. In particular, we demonstrate extraction, from wafer-scale simulation, of clear phylometric signals that differentiate runs with adaptive dynamics enabled versus disabled. Together, these benchmark and validation trials reflect strong potential for highly scalable agent-based evolution simulation that is both efficient and observable. Developed capabilities will bring entirely new classes of previously intractable research questions within reach, benefiting further explorations within the evolutionary biology and artificial life communities across a variety of emerging high-performance computing platforms.
- Abstract(参考訳): コンピューティングハードウェアの継続的な改善は、進化生物学や人工生命における大きなオープンな問題、例えば個体の遷移、エコ進化力学、希少な進化現象をシリコモデルでモデル化する能力の変容を図っている。
850,000プロセッサのCerebras Wafer Scale Engine(WSE)のような、ML/AI指向のハードウェアアクセラレータが新たに登場した。
しかし、これらのプラットフォームの大きなプロセッサ数を効率的に活用する情報進化実験の実践的な課題は依然として残っている。
本稿では,WSEプラットフォーム上でのエージェントベースの進化から系統情報を抽出する問題に焦点をあてる。
この目的は、シリコ系統追跡において分散化するために、重要な改良を促したとここで報告されている。
これらの改善により、オーダー・オブ・マグニチュードのパフォーマンスが向上する。
WSEハードウェアのための非同期島型遺伝的アルゴリズム(GA)フレームワークも提案する。
シミュレーションおよびオンハードのGAベンチマークでは、単純な追跡可能なエージェントモデルで、1分間に100万世代以上、人口規模で1600万のエージェントに到達した。
本研究は,これらの治験の系統的再構成を検証し,根底にある進化状態の推測に適合することを示す。
特に,適応力学を有効化して動作を区別する明快な系統信号のウェーハスケールシミュレーションからの抽出を実演する。
これらのベンチマークと検証試験は、効率的かつ観測可能な、高度にスケーラブルなエージェントベースの進化シミュレーションの強い可能性を反映している。
開発された能力は、これまで難解だった研究課題のまったく新しいクラスに到達し、進化生物学や人工生命のコミュニティにおける様々な新興高性能コンピューティングプラットフォームにおけるさらなる探索に役立ちます。
関連論文リスト
- A Guide to Tracking Phylogenies in Parallel and Distributed Agent-based Evolution Models [0.0]
エージェントベースモデルを用いたサイリコ研究では、シミュレートされたエージェント間の祖先関係の高品質な記録を収集する機会を提供する。
現存する研究は通常、系統を直接追跡し、進化史の正確な系統学的な記録を生み出している。
ポストホック推定は、生物情報学者が生物間の遺伝的類似性を評価することによって植物学を構築する方法に似ている。
論文 参考訳(メタデータ) (2024-05-16T15:27:51Z) - Phylotrack: C++ and Python libraries for in silico phylogenetic tracking [0.0]
Phylotrackプロジェクトは、シリコの進化における系統の追跡と解析のためのライブラリを提供する。
プロジェクトは,1) Phylotracklibと,2) Phylotrackpy: Phylotracklibを囲むPythonラッパーで,Pybind11で作成された。
論文 参考訳(メタデータ) (2024-05-15T14:47:43Z) - Trackable Island-model Genetic Algorithms at Wafer Scale [0.0]
本稿では,Cerebras Wafer-Scale Engine(WSE)ハードウェアのためのトラッキング対応非同期島型遺伝的アルゴリズム(GA)フレームワークを提案する。
系統的再構成を検証し,根底にある進化状態の推測に適合することを示す。
これらのベンチマークと検証試験は、高度にスケーラブルな進化計算の強い可能性を反映している。
論文 参考訳(メタデータ) (2024-05-06T16:17:33Z) - DARLEI: Deep Accelerated Reinforcement Learning with Evolutionary
Intelligence [77.78795329701367]
本稿では,進化アルゴリズムと並列化強化学習を組み合わせたフレームワークであるDARLEIを提案する。
我々はDARLEIの性能を様々な条件で特徴付け、進化形態の多様性に影響を与える要因を明らかにした。
今後DARLEIを拡張して、よりリッチな環境における多様な形態素間の相互作用を取り入れていきたいと考えています。
論文 参考訳(メタデータ) (2023-12-08T16:51:10Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - Deep metric learning improves lab of origin prediction of genetically
engineered plasmids [63.05016513788047]
遺伝工学の属性(GEA)は、配列-ラブの関連を作る能力である。
本稿では,計量学習に基づいて,最も可能性の高い実験室をランク付けする手法を提案する。
我々は、特定の実験室のプラスミド配列のキーシグネチャを抽出することができ、モデル出力の解釈可能な検査を可能にする。
論文 参考訳(メタデータ) (2021-11-24T16:29:03Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z) - Maximum Mutation Reinforcement Learning for Scalable Control [25.935468948833073]
強化学習(Reinforcement Learning, RL)は、大規模状態空間に対するデータ効率と最適制御を、スケーラブルな性能で実証している。
本稿では,スケーラブルなRLアルゴリズムであるEvolution-based Soft Actor-Critic (ESAC)を提案する。
論文 参考訳(メタデータ) (2020-07-24T16:29:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。