論文の概要: Semantics-Aware Attention Guidance for Diagnosing Whole Slide Images
- arxiv url: http://arxiv.org/abs/2404.10894v1
- Date: Tue, 16 Apr 2024 20:37:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 17:52:27.123729
- Title: Semantics-Aware Attention Guidance for Diagnosing Whole Slide Images
- Title(参考訳): 全スライド画像の診断のための意味的注意指導
- Authors: Kechun Liu, Wenjun Wu, Joann G. Elmore, Linda G. Shapiro,
- Abstract要約: 我々はSemantics-Aware Attention Guidance(SAG)という新しいフレームワークを紹介する。
SAGは,1) 診断関連エンティティを注意信号に変換する技術,2) 意味的に重要な情報を効率的に統合する柔軟な注意損失を含む。
2つの異なるがんデータセットに対する実験は、精度、精度、リコールにおいて一貫した改善を示す。
- 参考スコア(独自算出の注目度): 5.856390270089738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate cancer diagnosis remains a critical challenge in digital pathology, largely due to the gigapixel size and complex spatial relationships present in whole slide images. Traditional multiple instance learning (MIL) methods often struggle with these intricacies, especially in preserving the necessary context for accurate diagnosis. In response, we introduce a novel framework named Semantics-Aware Attention Guidance (SAG), which includes 1) a technique for converting diagnostically relevant entities into attention signals, and 2) a flexible attention loss that efficiently integrates various semantically significant information, such as tissue anatomy and cancerous regions. Our experiments on two distinct cancer datasets demonstrate consistent improvements in accuracy, precision, and recall with two state-of-the-art baseline models. Qualitative analysis further reveals that the incorporation of heuristic guidance enables the model to focus on regions critical for diagnosis. SAG is not only effective for the models discussed here, but its adaptability extends to any attention-based diagnostic model. This opens up exciting possibilities for further improving the accuracy and efficiency of cancer diagnostics.
- Abstract(参考訳): 正確ながん診断はデジタル病理学において重要な課題であり、主にスライド画像全体に存在するギガピクセルのサイズと複雑な空間的関係が原因である。
従来のマルチ・インスタンス・ラーニング(MIL)手法は、特に正確な診断に必要なコンテキストを保存する上で、これらの複雑さに苦しむことが多い。
これに対し,セマンティックス・アウェア・アテンション・ガイダンス (SAG) という新しいフレームワークを導入する。
1)診断関連物質を注意信号に変換する技術
2) 組織解剖学や癌領域などの意味学的重要な情報を効率的に統合するフレキシブル・アテンション・ロス。
2つの異なるがんデータセットに対する実験は、2つの最先端ベースラインモデルで精度、精度、リコールが一貫した改善を示した。
定性的分析により、ヒューリスティックガイダンスの導入により、モデルは診断に不可欠な領域に集中できることが明らかになった。
SAGは、ここで議論されたモデルに有効であるだけでなく、どの注意に基づく診断モデルにも適応可能である。
これは、がん診断の精度と効率をさらに向上させるエキサイティングな可能性を開く。
関連論文リスト
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Advancing Histopathology-Based Breast Cancer Diagnosis: Insights into Multi-Modality and Explainability [2.8145472964232137]
マルチモーダル技術を用いて、画像データと非画像データを統合することで、乳癌の診断における変革的な進歩を示す。
本稿では,マルチモーダルデータを用いて診断精度,臨床信頼度,患者のエンゲージメントを高めるための説明性を強調する。
論文 参考訳(メタデータ) (2024-06-07T19:23:22Z) - Low-Resolution Chest X-ray Classification via Knowledge Distillation and Multi-task Learning [46.75992018094998]
胸部X線(CXR)を低分解能で診断する上での課題について検討した。
高分解能CXRイメージングは、結節や不透明など、小さなが重要な異常を識別するために重要である。
本稿では,MLCAK(Multilevel Collaborative Attention Knowledge)法を提案する。
論文 参考訳(メタデータ) (2024-05-22T06:10:54Z) - Cross-Modal Domain Adaptation in Brain Disease Diagnosis: Maximum Mean Discrepancy-based Convolutional Neural Networks [0.0]
脳障害は世界の健康にとって大きな課題であり、毎年何百万人もの死者を出している。
これらの疾患の正確な診断は、MRIやCTのような高度な医療画像技術に大きく依存している。
注釈付きデータの不足は、診断のための機械学習モデルをデプロイする上で大きな課題となる。
論文 参考訳(メタデータ) (2024-05-06T07:44:46Z) - Deformable MRI Sequence Registration for AI-based Prostate Cancer Diagnosis [2.102189448685959]
PI-CAI(Prostate Imaging: Cancer AI)の課題は、臨床上重要な前立腺がん検出のための専門家レベルの診断アルゴリズムに繋がった。
これらのアルゴリズムは、T2重み付きおよび拡散重み付きスキャンからなる、バイパラメトリックMRIスキャンを入力として受信する。
これらのスキャンは、スキャンプロセスの複数の要因により、不整合が生じる可能性がある。
画像登録は、シーケンス間の変形を予測することでこの問題を軽減することができる。
論文 参考訳(メタデータ) (2024-04-15T10:57:16Z) - SeATrans: Learning Segmentation-Assisted diagnosis model via Transforme [13.63128987400635]
本稿では,視覚支援型診断変換器(SeATrans)を提案する。
まず、各低レベル診断特徴とマルチスケールセグメンテーション特徴とを相関させる非対称なマルチスケールインタラクション戦略を提案する。
セグメンテーション-診断相互作用をモデル化するために、SeAブロックはまず、エンコーダを介してセグメンテーション情報に基づいて診断特徴を埋め込み、デコーダによりその埋め込みを診断特徴空間に戻す。
論文 参考訳(メタデータ) (2022-06-12T15:10:33Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
マンモグラム質量検出のための解剖学的グラフ畳み込みネットワーク(AGN)を提案する。
AGNはマンモグラムの質量検出用に調整されており、既存の検出手法を多視点推論能力で実現している。
2つの標準ベンチマークの実験によると、AGNは最先端のパフォーマンスを大幅に上回っている。
論文 参考訳(メタデータ) (2021-05-21T06:48:34Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
頭頸部腫瘍の早期発見は患者の生存に不可欠である。
ハイパースペクトルイメージング(HSI)は頭頸部腫瘍の非侵襲的検出に用いられる。
HSIに基づく喉頭癌診断のための複数の深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-21T17:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。