Multi-Task Multi-Modal Self-Supervised Learning for Facial Expression Recognition
- URL: http://arxiv.org/abs/2404.10904v1
- Date: Tue, 16 Apr 2024 20:51:36 GMT
- Title: Multi-Task Multi-Modal Self-Supervised Learning for Facial Expression Recognition
- Authors: Marah Halawa, Florian Blume, Pia Bideau, Martin Maier, Rasha Abdel Rahman, Olaf Hellwich,
- Abstract summary: We employ a multi-modal self-supervised learning method for facial expression recognition from in-the-wild video data.
Our results generally show that multi-modal self-supervision tasks offer large performance gains for challenging tasks.
We release our pre-trained models as well as source code publicly.
- Score: 6.995226697189459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human communication is multi-modal; e.g., face-to-face interaction involves auditory signals (speech) and visual signals (face movements and hand gestures). Hence, it is essential to exploit multiple modalities when designing machine learning-based facial expression recognition systems. In addition, given the ever-growing quantities of video data that capture human facial expressions, such systems should utilize raw unlabeled videos without requiring expensive annotations. Therefore, in this work, we employ a multitask multi-modal self-supervised learning method for facial expression recognition from in-the-wild video data. Our model combines three self-supervised objective functions: First, a multi-modal contrastive loss, that pulls diverse data modalities of the same video together in the representation space. Second, a multi-modal clustering loss that preserves the semantic structure of input data in the representation space. Finally, a multi-modal data reconstruction loss. We conduct a comprehensive study on this multimodal multi-task self-supervised learning method on three facial expression recognition benchmarks. To that end, we examine the performance of learning through different combinations of self-supervised tasks on the facial expression recognition downstream task. Our model ConCluGen outperforms several multi-modal self-supervised and fully supervised baselines on the CMU-MOSEI dataset. Our results generally show that multi-modal self-supervision tasks offer large performance gains for challenging tasks such as facial expression recognition, while also reducing the amount of manual annotations required. We release our pre-trained models as well as source code publicly
Related papers
- VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - Can Text-to-image Model Assist Multi-modal Learning for Visual
Recognition with Visual Modality Missing? [37.73329106465031]
We propose a text-to-image framework GTI-MM to enhance the data efficiency and model robustness against missing visual modality.
Our findings reveal that synthetic images benefit training data efficiency with visual data missing in training and improve model robustness with visual data missing involving training and testing.
arXiv Detail & Related papers (2024-02-14T09:21:00Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
We tackle the problem of training a robot to understand multimodal prompts.
This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals.
We introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts.
arXiv Detail & Related papers (2023-10-14T22:24:58Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
Vision-language models (VLMs) have shown powerful capabilities in visual question answering and reasoning tasks.
In this paper, we demonstrate a method of aligning the embedding spaces of different modalities to the vision embedding space.
We show that using multiple modalities as input improves the VLM's scene understanding and enhances its overall performance in various tasks.
arXiv Detail & Related papers (2023-08-31T06:53:55Z) - Multimodal Masked Autoencoders Learn Transferable Representations [127.35955819874063]
We propose a simple and scalable network architecture, the Multimodal Masked Autoencoder (M3AE)
M3AE learns a unified encoder for both vision and language data via masked token prediction.
We provide an empirical study of M3AE trained on a large-scale image-text dataset, and find that M3AE is able to learn generalizable representations that transfer well to downstream tasks.
arXiv Detail & Related papers (2022-05-27T19:09:42Z) - X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation [71.51719469058666]
We propose a representation learning framework called X-Learner.
X-Learner learns the universal feature of multiple vision tasks supervised by various sources.
X-Learner achieves strong performance on different tasks without extra annotations, modalities and computational costs.
arXiv Detail & Related papers (2022-03-16T17:23:26Z) - Multi-View representation learning in Multi-Task Scene [4.509968166110557]
We propose a novel semi-supervised algorithm, termed as Multi-Task Multi-View learning based on Common and Special Features (MTMVCSF)
An anti-noise multi-task multi-view algorithm called AN-MTMVCSF is proposed, which has a strong adaptability to noise labels.
The effectiveness of these algorithms is proved by a series of well-designed experiments on both real world and synthetic data.
arXiv Detail & Related papers (2022-01-15T11:26:28Z) - TVDIM: Enhancing Image Self-Supervised Pretraining via Noisy Text Data [13.68491474904529]
We propose Text-enhanced Visual Deep InfoMax (TVDIM) to learn better visual representations.
Our core idea of self-supervised learning is to maximize the mutual information between features extracted from multiple views.
TVDIM significantly outperforms previous visual self-supervised methods when processing the same set of images.
arXiv Detail & Related papers (2021-06-03T12:36:01Z) - Learning Modality-Specific Representations with Self-Supervised
Multi-Task Learning for Multimodal Sentiment Analysis [11.368438990334397]
We develop a self-supervised learning strategy to acquire independent unimodal supervisions.
We conduct extensive experiments on three public multimodal baseline datasets.
Our method achieves comparable performance than human-annotated unimodal labels.
arXiv Detail & Related papers (2021-02-09T14:05:02Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - Self-Supervised MultiModal Versatile Networks [76.19886740072808]
We learn representations using self-supervision by leveraging three modalities naturally present in videos: visual, audio and language streams.
We demonstrate how such networks trained on large collections of unlabelled video data can be applied on video, video-text, image and audio tasks.
arXiv Detail & Related papers (2020-06-29T17:50:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.