論文の概要: Multi-Task Multi-Modal Self-Supervised Learning for Facial Expression Recognition
- arxiv url: http://arxiv.org/abs/2404.10904v2
- Date: Wed, 4 Sep 2024 09:42:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 03:22:33.608859
- Title: Multi-Task Multi-Modal Self-Supervised Learning for Facial Expression Recognition
- Title(参考訳): 顔表情認識のためのマルチタスクマルチモーダル自己教師付き学習
- Authors: Marah Halawa, Florian Blume, Pia Bideau, Martin Maier, Rasha Abdel Rahman, Olaf Hellwich,
- Abstract要約: In-the-wildビデオデータから表情認識のためのマルチモーダル自己教師学習手法を用いる。
以上の結果から,マルチモーダル・セルフ・スーパービジョン・タスクが課題に対して大きなパフォーマンス向上をもたらすことが示唆された。
トレーニング済みのモデルとソースコードを公開しています。
- 参考スコア(独自算出の注目度): 6.995226697189459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human communication is multi-modal; e.g., face-to-face interaction involves auditory signals (speech) and visual signals (face movements and hand gestures). Hence, it is essential to exploit multiple modalities when designing machine learning-based facial expression recognition systems. In addition, given the ever-growing quantities of video data that capture human facial expressions, such systems should utilize raw unlabeled videos without requiring expensive annotations. Therefore, in this work, we employ a multitask multi-modal self-supervised learning method for facial expression recognition from in-the-wild video data. Our model combines three self-supervised objective functions: First, a multi-modal contrastive loss, that pulls diverse data modalities of the same video together in the representation space. Second, a multi-modal clustering loss that preserves the semantic structure of input data in the representation space. Finally, a multi-modal data reconstruction loss. We conduct a comprehensive study on this multimodal multi-task self-supervised learning method on three facial expression recognition benchmarks. To that end, we examine the performance of learning through different combinations of self-supervised tasks on the facial expression recognition downstream task. Our model ConCluGen outperforms several multi-modal self-supervised and fully supervised baselines on the CMU-MOSEI dataset. Our results generally show that multi-modal self-supervision tasks offer large performance gains for challenging tasks such as facial expression recognition, while also reducing the amount of manual annotations required. We release our pre-trained models as well as source code publicly
- Abstract(参考訳): ヒューマンコミュニケーションはマルチモーダルであり、例えば、対面相互作用には聴覚信号(音声)と視覚信号(顔の動きと手の動き)が含まれる。
したがって、機械学習に基づく顔認識システムの設計において、複数のモダリティを活用することが不可欠である。
さらに、人間の表情を捉えたビデオデータがどんどん増え続けていることを踏まえると、こうしたシステムは高価なアノテーションを必要とせず、生のラベル付きビデオを活用すべきである。
そこで本研究では,マルチタスク・マルチモーダル・セルフ教師付き学習手法を用いて,映像データから表情認識を行う。
まず、マルチモーダルなコントラスト損失であり、同じビデオの多様なデータモダリティを表現空間で引き出す。
第二に、表現空間における入力データのセマンティック構造を保存するマルチモーダルクラスタリング損失。
最後に、マルチモーダルデータ再構成損失。
本稿では,このマルチモーダルなマルチタスク型自己教師型学習手法について,3つの表情認識ベンチマークで包括的な研究を行う。
そこで本研究では,表情認識タスクにおける自己指導タスクの異なる組み合わせによる学習性能について検討する。
我々のモデルであるConCluGenは、CMU-MOSEIデータセット上で、複数のマルチモーダルな自己教師付きベースラインより優れています。
以上の結果から,マルチモーダル・セルフ・スーパービジョン・タスクは表情認識などの課題に対して大きなパフォーマンス向上をもたらすとともに,手動アノテーションの量も削減できることがわかった。
トレーニング済みのモデルとソースコードを公開しています。
関連論文リスト
- VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
既存のテキスト間拡散モデルは、事前訓練のためにテキストのみのエンコーダにのみ依存する。
検索手法を用いて大規模マルチモーダル・プロンプト・データセットを構築し,テキスト・プロンプトとテキスト・プロンプトのペア化を行う。
マルチモーダル命令を組み込んだ3つのビデオ生成タスクにおいて,第1ステージからモデルを微調整する。
論文 参考訳(メタデータ) (2024-07-08T18:12:49Z) - Can Text-to-image Model Assist Multi-modal Learning for Visual
Recognition with Visual Modality Missing? [37.73329106465031]
視覚的モダリティの欠如に対するデータ効率の向上とロバスト性をモデル化するためのテキスト・ツー・イメージ・フレームワークであるGTI-MMを提案する。
以上の結果から, 合成画像はトレーニングにおける視覚的データの欠如によるトレーニングデータの効率向上と, トレーニングやテストに関わる視覚的データの欠如によるモデルロバスト性向上に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-02-14T09:21:00Z) - Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning [49.92517970237088]
我々はマルチモーダルなプロンプトを理解するためにロボットを訓練する問題に取り組む。
このようなタスクは、視覚と言語信号の相互接続と相補性を理解するロボットの能力にとって大きな課題となる。
マルチモーダルプロンプトを用いてロボット操作を行うためのポリシーを学習する効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-14T22:24:58Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
視覚言語モデル(VLM)は、視覚的質問応答と推論タスクにおいて強力な能力を示している。
本稿では,異なるモダリティの埋め込み空間を視覚埋め込み空間に整列させる手法を示す。
複数モードを入力として使用すると、VLMのシーン理解が向上し、様々なタスクにおける全体的なパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-08-31T06:53:55Z) - Multimodal Masked Autoencoders Learn Transferable Representations [127.35955819874063]
単純でスケーラブルなネットワークアーキテクチャであるM3AE(Multimodal Masked Autoencoder)を提案する。
M3AEは、マスク付きトークン予測により、視覚と言語データの両方の統一エンコーダを学習する。
我々は,大規模な画像テキストデータセット上で訓練されたM3AEについて実証的研究を行い,M3AEが下流タスクによく伝達される一般化可能な表現を学習できることを見出した。
論文 参考訳(メタデータ) (2022-05-27T19:09:42Z) - X-Learner: Learning Cross Sources and Tasks for Universal Visual
Representation [71.51719469058666]
本稿では,X-Learnerという表現学習フレームワークを提案する。
X-Learnerは、様々なソースによって管理される複数の視覚タスクの普遍的な特徴を学習する。
X-Learnerは、追加のアノテーションやモダリティ、計算コストを使わずに、様々なタスクで強力なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-03-16T17:23:26Z) - Multi-View representation learning in Multi-Task Scene [4.509968166110557]
我々は,MTMVCSF(Common and Special Features)に基づくマルチタスク多視点学習(multi-Task Multi-View learning)と呼ばれる,新しい半教師付きアルゴリズムを提案する。
AN-MTMVCSFと呼ばれるマルチタスク・マルチタスク・マルチビュー・アルゴリズムが提案されている。
これらのアルゴリズムの有効性は、実世界と合成データの双方でよく設計された実験によって証明される。
論文 参考訳(メタデータ) (2022-01-15T11:26:28Z) - TVDIM: Enhancing Image Self-Supervised Pretraining via Noisy Text Data [13.68491474904529]
テキスト強化型ビジュアルディープインフォマティクス(TVDIM)を提案する。
自己教師型学習の中核となる考え方は、複数の視点から抽出された特徴間の相互情報の最大化である。
TVDIMは、同じ画像の集合を処理する際に、従来の視覚的自己監督手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-03T12:36:01Z) - Learning Modality-Specific Representations with Self-Supervised
Multi-Task Learning for Multimodal Sentiment Analysis [11.368438990334397]
我々は,独立した一助的指導を受けるための自己指導型学習戦略を開発する。
我々は3つの公開マルチモーダルベースラインデータセットについて広範な実験を行った。
提案手法は,人間の注釈付きアンモダルラベルと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-02-09T14:05:02Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Self-Supervised MultiModal Versatile Networks [76.19886740072808]
我々は、ビデオに自然に存在する3つのモダリティ(ビジュアル、オーディオ、言語ストリーム)を活用することで、自己スーパービジョンを用いて表現を学習する。
ビデオ, ビデオテキスト, 画像, 音声タスクに対して, ビデオデータの大規模な収集を訓練したネットワークを, どのように適用できるかを実証する。
論文 参考訳(メタデータ) (2020-06-29T17:50:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。