論文の概要: Which questions should I answer? Salience Prediction of Inquisitive Questions
- arxiv url: http://arxiv.org/abs/2404.10917v2
- Date: Thu, 03 Oct 2024 17:59:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-04 23:30:35.401002
- Title: Which questions should I answer? Salience Prediction of Inquisitive Questions
- Title(参考訳): どの質問に答えるべきか : 質問に対する回答予測
- Authors: Yating Wu, Ritika Mangla, Alexandros G. Dimakis, Greg Durrett, Junyi Jessy Li,
- Abstract要約: 非常に健全な質問は、同じ記事で経験的に答えられる可能性が高いことを示す。
質問に対する回答が,ニュースの要約品質の指標であることを示すことで,我々の知見をさらに検証する。
- 参考スコア(独自算出の注目度): 118.097974193544
- License:
- Abstract: Inquisitive questions -- open-ended, curiosity-driven questions people ask as they read -- are an integral part of discourse processing (Kehler and Rohde, 2017; Onea, 2016) and comprehension (Prince, 2004). Recent work in NLP has taken advantage of question generation capabilities of LLMs to enhance a wide range of applications. But the space of inquisitive questions is vast: many questions can be evoked from a given context. So which of those should be prioritized to find answers? Linguistic theories, unfortunately, have not yet provided an answer to this question. This paper presents QSALIENCE, a salience predictor of inquisitive questions. QSALIENCE is instruction-tuned over our dataset of linguist-annotated salience scores of 1,766 (context, question) pairs. A question scores high on salience if answering it would greatly enhance the understanding of the text (Van Rooy, 2003). We show that highly salient questions are empirically more likely to be answered in the same article, bridging potential questions (Onea, 2016) with Questions Under Discussion (Roberts, 2012). We further validate our findings by showing that answering salient questions is an indicator of summarization quality in news.
- Abstract(参考訳): オープンエンドで好奇心に駆られた質問は、議論処理(Kehler and Rohde, 2017; Onea, 2016)と理解(Prince, 2004)の不可欠な部分である。
NLP における最近の研究は LLM の質問生成機能を活用し、幅広い応用を拡大している。
しかし、多くの質問は与えられた文脈から呼び出すことができる。
では、どれを優先順位付けして答えを見つけるべきか?
言語学理論は、残念ながら、まだこの疑問に対する答えを提供していない。
本稿では,質問のサリエンス予測手法であるQSALIENCEについて述べる。
QSALIenceは1,766対(コンテキスト,質問)の言語学者が注釈付けしたサリエンススコアのデータセット上で命令調整される。
質問は、文章の理解を大幅に向上させるなら、サリエンスを高く評価する(Van Rooy, 2003)。
また,本論文では,有望な質問(Onea, 2016)と質問下討論(Roberts, 2012)を交えて回答する傾向が実証的に高いことを示す。
質問に対する回答が,ニュースの要約品質の指標であることを示すことで,我々の知見をさらに検証する。
関連論文リスト
- How to Engage Your Readers? Generating Guiding Questions to Promote Active Reading [60.19226384241482]
教科書や科学論文から10Kのインテキスト質問のデータセットであるGuidingQを紹介した。
言語モデルを用いてこのような質問を生成するための様々なアプローチを探索する。
我々は、そのような質問が読解に与える影響を理解するために、人間の研究を行う。
論文 参考訳(メタデータ) (2024-07-19T13:42:56Z) - Researchy Questions: A Dataset of Multi-Perspective, Decompositional
Questions for LLM Web Agents [22.023543164141504]
我々は,検索エンジンクエリのデータセットであるResearchy Questionsを紹介した。
クリックやセッションの長さといったシグナルによって,これらの質問に多くの労力が費やされていることを,私たちは示しています。
また、サブクエストへの分解のようなスロー思考の解答技術は、直接解答するよりも有益であることを示す。
論文 参考訳(メタデータ) (2024-02-27T21:27:16Z) - Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
ウィキペディアから生成される曖昧な質問のデータベースを利用して、あいまいな質問に答えるための新しい最先端技術を提案する。
提案手法は,リコール対策で15%,予測出力から不明瞭な質問を評価する尺度で10%向上する。
論文 参考訳(メタデータ) (2023-08-16T20:23:16Z) - CREPE: Open-Domain Question Answering with False Presuppositions [92.20501870319765]
オンライン情報検索フォーラムからの予測失敗の自然な分布を含むQAデータセットであるCREPEを紹介する。
25%の質問が偽の前提命題を含み、これらの前提命題とその修正のための注釈を提供する。
既存のオープンドメインQAモデルの適応は適度に予測できるが、仮定が実際に正しいかどうかを予測するのに苦労する。
論文 参考訳(メタデータ) (2022-11-30T18:54:49Z) - Discourse Comprehension: A Question Answering Framework to Represent
Sentence Connections [35.005593397252746]
談話理解のためのモデルの構築と評価における重要な課題は、注釈付きデータの欠如である。
本稿では,ニュース文書の理解を目的としたスケーラブルなデータ収集を実現する新しいパラダイムを提案する。
得られたコーパスDCQAは、607の英語文書からなる22,430の質問応答ペアで構成されている。
論文 参考訳(メタデータ) (2021-11-01T04:50:26Z) - A Dataset of Information-Seeking Questions and Answers Anchored in
Research Papers [66.11048565324468]
1,585の自然言語処理論文に関する5,049の質問のデータセットを提示する。
各質問は、対応する論文のタイトルと要約のみを読むNLP実践者によって書かれ、質問は全文に存在する情報を求めます。
他のQAタスクでうまく機能する既存のモデルは、これらの質問に答える上ではうまく機能せず、論文全体から回答する際には、少なくとも27 F1ポイントパフォーマンスが低下します。
論文 参考訳(メタデータ) (2021-05-07T00:12:34Z) - GooAQ: Open Question Answering with Diverse Answer Types [63.06454855313667]
さまざまな回答型を持つ大規模データセットであるGooAQを紹介する。
このデータセットには500万の質問と300万の回答が含まれている。
論文 参考訳(メタデータ) (2021-04-18T05:40:39Z) - Stay Hungry, Stay Focused: Generating Informative and Specific Questions
in Information-Seeking Conversations [41.74162467619795]
情報非対称な会話における情報的質問生成の問題について検討する。
実践的な質問を生成するために,情報量測定を最適化するために強化学習を用いる。
そこで本研究では,提案した実用的質問は,ベースラインモデル上で生成した質問の有意性と特異性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2020-04-30T00:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。