論文の概要: What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2404.10942v1
- Date: Tue, 16 Apr 2024 22:47:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 17:42:39.967826
- Title: What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning
- Title(参考訳): 不公平の裏には何が隠されているのか : 強化学習におけるダイナミクスフェアネスの探求
- Authors: Zhihong Deng, Jing Jiang, Guodong Long, Chengqi Zhang,
- Abstract要約: 強化学習問題では、エージェントはリターンを最大化しながら長期的な公正性を慎重に検討する必要がある。
近年の研究では様々なフェアネスの概念が提案されているが、RL問題における不公平性がどのように生じるかは定かではない。
我々は、環境力学から生じる不平等を明示的に捉える、ダイナミックスフェアネスという新しい概念を導入する。
- 参考スコア(独自算出の注目度): 52.51430732904994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In sequential decision-making problems involving sensitive attributes like race and gender, reinforcement learning (RL) agents must carefully consider long-term fairness while maximizing returns. Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear. In this paper, we address this gap in the literature by investigating the sources of inequality through a causal lens. We first analyse the causal relationships governing the data generation process and decompose the effect of sensitive attributes on long-term well-being into distinct components. We then introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics, distinguishing it from those induced by decision-making or inherited from the past. This notion requires evaluating the expected changes in the next state and the reward induced by changing the value of the sensitive attribute while holding everything else constant. To quantitatively evaluate this counterfactual concept, we derive identification formulas that allow us to obtain reliable estimations from data. Extensive experiments demonstrate the effectiveness of the proposed techniques in explaining, detecting, and reducing inequality in reinforcement learning.
- Abstract(参考訳): 人種や性別などのセンシティブな属性を含む逐次的意思決定問題において、強化学習(RL)エージェントは、リターンを最大化しながら長期的な公正性を慎重に検討する必要がある。
近年の研究では様々なフェアネスの概念が提案されているが、RL問題における不公平性がどのように生じるかは定かではない。
本稿では,不平等の原因を因果レンズで調べることで,文献のこのギャップを解消する。
まず,データ生成過程を規定する因果関係を解析し,長期的幸福感に対する機密属性の影響を個別の構成要素に分解する。
次に、環境力学から生じる不平等を明示的に捉え、意思決定によって引き起こされたものや過去に受け継がれたものと区別する、ダイナミックスフェアネスという新しい概念を導入する。
この概念は、次の状態における期待される変化と、他の全てを一定に保ちながらセンシティブな属性の値を変更することで引き起こされる報酬を評価する必要がある。
この反事実概念を定量的に評価するために,データから信頼性の高い推定値が得られる識別式を導出する。
大規模実験は、強化学習における不平等の説明、検出、低減における提案手法の有効性を実証する。
関連論文リスト
- One Fits All: Learning Fair Graph Neural Networks for Various Sensitive Attributes [40.57757706386367]
不変学習,すなわちFairINVに基づくグラフフェアネスフレームワークを提案する。
FairINVはセンシティブな属性分割を取り入れ、ラベルと各種のセンシティブな属性の間の急激な相関を排除し、公正なGNNを訓練する。
いくつかの実世界のデータセットの実験結果から、FairINVは最先端のフェアネスアプローチを著しく上回っていることが示されている。
論文 参考訳(メタデータ) (2024-06-19T13:30:17Z) - Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
我々は、初めて因果レンズから公正性と正確性の間の張力を分析する。
因果的制約を強制することは、しばしば人口集団間の格差を減少させることを示す。
因果制約付きフェアラーニングのための新しいニューラルアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-24T11:19:52Z) - Improving Fairness using Vision-Language Driven Image Augmentation [60.428157003498995]
公平性は、特に顔領域において、ディープラーニングの識別モデルを訓練する際に重要である。
モデルは、特定の特性(年齢や肌の色など)と無関係な属性(下流タスク)を関連付ける傾向がある
本稿では,これらの相関を緩和し,公平性を向上する手法を提案する。
論文 参考訳(メタデータ) (2023-11-02T19:51:10Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
機械学習アプリケーションにおける差別の原因を明らかにするための包括的アプローチを提案する。
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated region。
これにより、各特徴がバイアスに影響を及ぼすかどうかを測定するために強制的公正性を使用する凝集系を導出することができる。
論文 参考訳(メタデータ) (2023-08-22T00:10:23Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - FAIRER: Fairness as Decision Rationale Alignment [23.098752318439782]
ディープニューラルネットワーク(DNN)は大きな進歩を遂げているが、フェアネスの問題に悩まされることが多い。
トレーニングされたネットワークがどのように公正な予測を行い、将来の公正性を改善するのかは不明だ。
本稿では, 勾配誘導パリティアライメントを提案し, サブグループ間のニューロンの勾配重み付けを促進させる。
論文 参考訳(メタデータ) (2023-06-27T08:37:57Z) - Counterfactual Fairness with Partially Known Causal Graph [85.15766086381352]
本稿では,真の因果グラフが不明な場合に,対実フェアネスの概念を実現するための一般的な手法を提案する。
特定の背景知識が提供されると、正の因果グラフが完全に知られているかのように、反ファクト的公正性を達成することができる。
論文 参考訳(メタデータ) (2022-05-27T13:40:50Z) - Learning Fair Node Representations with Graph Counterfactual Fairness [56.32231787113689]
以上の事実から導かれるバイアスを考慮したグラフ反事実公正性を提案する。
我々は各ノードとその周辺住民の感度特性の摂動に対応する反事実を生成する。
我々のフレームワークはグラフの反ファクトフェアネスにおける最先端のベースラインよりも優れています。
論文 参考訳(メタデータ) (2022-01-10T21:43:44Z) - Fairness without the sensitive attribute via Causal Variational
Autoencoder [17.675997789073907]
EUにおけるプライバシーの目的とRGPDのような多彩な規制のため、多くの個人機密属性は収集されないことが多い。
近年の開発成果を近似推論に活用することにより,このギャップを埋めるためのアプローチを提案する。
因果グラフに基づいて、機密情報プロキシを推論するために、SRCVAEと呼ばれる新しい変分自動符号化ベースのフレームワークを利用する。
論文 参考訳(メタデータ) (2021-09-10T17:12:52Z) - Adversarial Learning for Counterfactual Fairness [15.302633901803526]
近年、フェアネスは機械学習研究コミュニティにおいて重要なトピックとなっている。
我々は,MDDの罰則よりも強力な推論を可能にする,対向的ニューラルネットワークアプローチに頼ることを提案する。
実験では、離散的および連続的な設定の両方に対して、対実的公正性の観点から、顕著な改善が示された。
論文 参考訳(メタデータ) (2020-08-30T09:06:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。