論文の概要: Uncertainty-Based Abstention in LLMs Improves Safety and Reduces Hallucinations
- arxiv url: http://arxiv.org/abs/2404.10960v1
- Date: Tue, 16 Apr 2024 23:56:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 15:43:59.570048
- Title: Uncertainty-Based Abstention in LLMs Improves Safety and Reduces Hallucinations
- Title(参考訳): LLMの不確かさによる安全性向上と幻覚の低減
- Authors: Christian Tomani, Kamalika Chaudhuri, Ivan Evtimov, Daniel Cremers, Mark Ibrahim,
- Abstract要約: 大きな言語モデル(LLM)の実践的デプロイに対する大きな障壁は、信頼性の欠如である。
このことが特に顕著な3つの状況は、正しさ、未解決の質問に対する幻覚、安全性である。
人間のように、不確実性を理解する能力があるため、私たちが知らない質問への答えを控えるべきです。
- 参考スコア(独自算出の注目度): 63.330182403615886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major barrier towards the practical deployment of large language models (LLMs) is their lack of reliability. Three situations where this is particularly apparent are correctness, hallucinations when given unanswerable questions, and safety. In all three cases, models should ideally abstain from responding, much like humans, whose ability to understand uncertainty makes us refrain from answering questions we don't know. Inspired by analogous approaches in classification, this study explores the feasibility and efficacy of abstaining while uncertain in the context of LLMs within the domain of question-answering. We investigate two kinds of uncertainties, statistical uncertainty metrics and a distinct verbalized measure, termed as In-Dialogue Uncertainty (InDU). Using these uncertainty measures combined with models with and without Reinforcement Learning with Human Feedback (RLHF), we show that in all three situations, abstention based on the right kind of uncertainty measure can boost the reliability of LLMs. By sacrificing only a few highly uncertain samples we can improve correctness by 2% to 8%, avoid 50% hallucinations via correctly identifying unanswerable questions and increase safety by 70% up to 99% with almost no additional computational overhead.
- Abstract(参考訳): 大きな言語モデル(LLM)の実践的デプロイに対する大きな障壁は、信頼性の欠如である。
このことが特に顕著な3つの状況は、正しさ、未解決の質問に対する幻覚、安全性である。
人間のように、不確実性を理解する能力があるため、私たちが知らない質問への答えを控えるべきです。
分類における類似のアプローチから着想を得た本研究では,質問応答領域内のLLMの文脈において,棄却の有効性と有効性について検討した。
In-Dialogue Uncertainty (InDU) と呼ばれる2種類の不確実性, 統計的不確実性尺度, 明瞭な言語化尺度について検討した。
これらの不確実性対策とRLHF(Reinforcement Learning with Human Feedback)が組み合わさったモデルを用いて、適切な種類の不確実性尺度に基づく棄権がLLMの信頼性を高めることを示す。
非常に不確実なサンプルだけを犠牲にすることで、正しさを2%から8%向上させ、解答不能な質問を正しく識別することで幻覚の50%を回避し、計算オーバーヘッドがほとんどないまま、安全性を70%から99%向上させることができる。
関連論文リスト
- LoGU: Long-form Generation with Uncertainty Expressions [49.76417603761989]
不確実性を伴う長文生成(LoGU)の課題について紹介する。
不確実性抑制と不確実性誤認の2つの主要な課題を特定します。
当社のフレームワークでは,原子的クレームに基づく不確実性を改善するため,分割・分散戦略を採用している。
提案手法が精度を向上し,幻覚を低減し,応答の包括性を維持できることを示す。
論文 参考訳(メタデータ) (2024-10-18T09:15:35Z) - MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty [10.154013836043816]
我々は,世界知識,数学的推論,コモンセンス推論タスクからなるMulti-Answer Question Answering データセット MAQA を提案する。
その結果,データ不確実性の下でも,エントロピーと一貫性に基づく手法がモデルの不確実性をよく推定できることが示唆された。
我々は、我々の観察が、現実的な環境での不確実性定量化に関する今後の研究の道を開くと信じている。
論文 参考訳(メタデータ) (2024-08-13T11:17:31Z) - Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness [106.52630978891054]
視覚言語AIシステムに特有の不確実性の分類法を提案する。
また、精度と校正誤差の両方によく相関する新しい計量信頼度重み付き精度を導入する。
論文 参考訳(メタデータ) (2024-07-02T04:23:54Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
大規模言語モデル(LLM)の不確実性は、安全性と信頼性が重要であるアプリケーションには不可欠である。
ホワイトボックスとブラックボックス LLM における不確実性評価手法である Kernel Language Entropy (KLE) を提案する。
論文 参考訳(メタデータ) (2024-05-30T12:42:05Z) - Semantic Density: Uncertainty Quantification for Large Language Models through Confidence Measurement in Semantic Space [14.715989394285238]
既存のLarge Language Models (LLM) には、ユーザが生成するレスポンスごとに不確実性/信頼度を計測するための固有の機能がない。
本稿では,これらの課題に対処する新しい枠組みを提案する。
意味密度は、意味空間における確率分布の観点から各応答の不確かさ/自信情報を抽出する。
論文 参考訳(メタデータ) (2024-05-22T17:13:49Z) - Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach [6.209293868095268]
LLMにおける不確実性推定と校正の問題について検討する。
LLMの応答の不確かさを推定するためにラベル付きデータセットを利用する教師付きアプローチを提案する。
本手法は,ブラックボックス,グレイボックス,ホワイトボックスなど,モデルアクセシビリティの異なるレベルに適応し,実装が容易である。
論文 参考訳(メタデータ) (2024-04-24T17:10:35Z) - Examining LLMs' Uncertainty Expression Towards Questions Outside
Parametric Knowledge [35.067234242461545]
大規模言語モデル(LLM)は、適切な応答を生成するのに十分なパラメトリック知識が不足している状況において不確実性を表現する。
本研究の目的は,このような状況下でのLCMの行動の体系的調査であり,誠実さと役に立つことのトレードオフを強調することである。
論文 参考訳(メタデータ) (2023-11-16T10:02:40Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。