Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty
- URL: http://arxiv.org/abs/2404.10980v1
- Date: Wed, 17 Apr 2024 01:26:15 GMT
- Title: Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty
- Authors: Changbin Li, Kangshuo Li, Yuzhe Ou, Lance M. Kaplan, Audun Jøsang, Jin-Hee Cho, Dong Hyun Jeong, Feng Chen,
- Abstract summary: We show that a novel framework called Hyper-Evidential Neural Network (HENN) explicitly models predictive uncertainty due to composite class labels.
Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets.
- Score: 11.964685090237392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/Hugo101/HyperEvidentialNN.
Related papers
- Fuzzy Convolution Neural Networks for Tabular Data Classification [0.0]
Convolutional neural networks (CNNs) have attracted a great deal of attention due to their remarkable performance in various domains.
In this paper, we propose a novel framework fuzzy convolution neural network (FCNN) tailored specifically for tabular data.
arXiv Detail & Related papers (2024-06-04T20:33:35Z) - A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
We proposed a novel hierarchical fused quantum fuzzy neural network (HQFNN)
HQFNN uses quantum neural networks to learn fuzzy membership functions in fuzzy neural network.
Results show that the proposed model can outperform several existing methods.
arXiv Detail & Related papers (2024-03-14T12:09:36Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Rethinking Nearest Neighbors for Visual Classification [56.00783095670361]
k-NN is a lazy learning method that aggregates the distance between the test image and top-k neighbors in a training set.
We adopt k-NN with pre-trained visual representations produced by either supervised or self-supervised methods in two steps.
Via extensive experiments on a wide range of classification tasks, our study reveals the generality and flexibility of k-NN integration.
arXiv Detail & Related papers (2021-12-15T20:15:01Z) - Hybrid Graph Neural Networks for Few-Shot Learning [85.93495480949079]
Graph neural networks (GNNs) have been used to tackle the few-shot learning problem.
Under the inductive setting, existing GNN based methods are less competitive.
We propose a novel hybrid GNN model consisting of two GNNs, an instance GNN and a prototype GNN.
arXiv Detail & Related papers (2021-12-13T10:20:15Z) - Selective Pseudo-label Clustering [42.19193184852487]
Deep neural networks (DNNs) offer a means of addressing the challenging task of clustering high-dimensional data.
We propose selective pseudo-label clustering, which uses only the most confident pseudo-labels for training theDNN.
New approach achieves a state-of-the-art performance on three popular image datasets.
arXiv Detail & Related papers (2021-07-22T13:56:53Z) - Why have a Unified Predictive Uncertainty? Disentangling it using Deep
Split Ensembles [39.29536042476913]
Understanding and quantifying uncertainty in black box Neural Networks (NNs) is critical when deployed in real-world settings such as healthcare.
We propose a conceptually simple non-Bayesian approach, deep split ensemble, to disentangle the predictive uncertainties.
arXiv Detail & Related papers (2020-09-25T19:15:26Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - One Versus all for deep Neural Network Incertitude (OVNNI)
quantification [12.734278426543332]
We propose a new technique to quantify the epistemic uncertainty of data easily.
This method consists in mixing the predictions of an ensemble of DNNs trained to classify One class vs All the other classes (OVA) with predictions from a standard DNN trained to perform All vs All (AVA) classification.
arXiv Detail & Related papers (2020-06-01T14:06:12Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.