Fuzzy Convolution Neural Networks for Tabular Data Classification
- URL: http://arxiv.org/abs/2406.03506v5
- Date: Mon, 14 Oct 2024 21:21:31 GMT
- Title: Fuzzy Convolution Neural Networks for Tabular Data Classification
- Authors: Arun D. Kulkarni,
- Abstract summary: Convolutional neural networks (CNNs) have attracted a great deal of attention due to their remarkable performance in various domains.
In this paper, we propose a novel framework fuzzy convolution neural network (FCNN) tailored specifically for tabular data.
- Score: 0.0
- License:
- Abstract: Recently, convolution neural networks (CNNs) have attracted a great deal of attention due to their remarkable performance in various domains, particularly in image and text classification tasks. However, their application to tabular data classification remains underexplored. There are many fields such as bioinformatics, finance, medicine where nonimage data are prevalent. Adaption of CNNs to classify nonimage data remains highly challenging. This paper investigates the efficacy of CNNs for tabular data classification, aiming to bridge the gap between traditional machine learning approaches and deep learning techniques. We propose a novel framework fuzzy convolution neural network (FCNN) tailored specifically for tabular data to capture local patterns within feature vectors. In our approach, we map feature values to fuzzy memberships. The fuzzy membership vectors are converted into images that are used to train the CNN model. The trained CNN model is used to classify unknown feature vectors. To validate our approach, we generated six complex noisy data sets. We used randomly selected seventy percent samples from each data set for training and thirty percent for testing. The data sets were also classified using the state-of-the-art machine learning algorithms such as the decision tree (DT), support vector machine (SVM), fuzzy neural network (FNN), Bayes classifier, and Random Forest (RF). Experimental results demonstrate that our proposed model can effectively learn meaningful representations from tabular data, achieving competitive or superior performance compared to existing methods. Overall, our finding suggests that the proposed FCNN model holds promise as a viable alternative for tabular data classification tasks, offering a fresh prospective and potentially unlocking new opportunities for leveraging deep learning in structured data analysis.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - A Hierarchical Fused Quantum Fuzzy Neural Network for Image Classification [8.7057403071943]
We proposed a novel hierarchical fused quantum fuzzy neural network (HQFNN)
HQFNN uses quantum neural networks to learn fuzzy membership functions in fuzzy neural network.
Results show that the proposed model can outperform several existing methods.
arXiv Detail & Related papers (2024-03-14T12:09:36Z) - Random Padding Data Augmentation [23.70951896315126]
convolutional neural network (CNN) learns the same object in different positions in images.
The usefulness of the features' spatial information in CNNs has not been well investigated.
We introduce Random Padding, a new type of padding method for training CNNs.
arXiv Detail & Related papers (2023-02-17T04:15:33Z) - Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
Cross entropy loss can easily lead us to find models which demonstrate severe overfitting behavior.
In this paper, we prove that the existing cross entropy loss minimization for training DNN classifiers essentially learns the conditional entropy of the underlying data distribution.
We propose a mutual information learning framework where we train DNN classifiers via learning the mutual information between the label and input.
arXiv Detail & Related papers (2022-10-03T15:09:19Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification.
The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs.
arXiv Detail & Related papers (2022-06-17T04:07:45Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Consistent Relative Confidence and Label-Free Model Selection for
Convolutional Neural Networks [4.497097230665825]
This paper presents an approach to CNN model selection using only unlabeled data.
The effectiveness and efficiency of the presented method are demonstrated by extensive experimental studies based on datasets MNIST and FasionMNIST.
arXiv Detail & Related papers (2021-08-26T15:14:38Z) - Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data
via Differentiable Cross-Approximation [53.95297550117153]
We propose an end-to-end trainable framework that processes large-scale visual data tensors by looking emphat a fraction of their entries only.
The proposed approach is particularly useful for large-scale multidimensional grid data, and for tasks that require context over a large receptive field.
arXiv Detail & Related papers (2021-05-29T08:39:57Z) - DEAL: Deep Evidential Active Learning for Image Classification [0.0]
Active Learning (AL) is one approach to mitigate the problem of limited labeled data.
Recent AL methods for CNNs propose different solutions for the selection of instances to be labeled.
We propose a novel AL algorithm that efficiently learns from unlabeled data by capturing high prediction uncertainty.
arXiv Detail & Related papers (2020-07-22T11:14:23Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.