Clipped SGD Algorithms for Privacy Preserving Performative Prediction: Bias Amplification and Remedies
- URL: http://arxiv.org/abs/2404.10995v1
- Date: Wed, 17 Apr 2024 02:17:05 GMT
- Title: Clipped SGD Algorithms for Privacy Preserving Performative Prediction: Bias Amplification and Remedies
- Authors: Qiang Li, Michal Yemini, Hoi-To Wai,
- Abstract summary: Clipped gradient descent (SGD) algorithms are among the most popular algorithms for privacy preserving optimization.
This paper studies the convergence properties of these algorithms in a performative prediction setting.
- Score: 28.699424769503764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clipped stochastic gradient descent (SGD) algorithms are among the most popular algorithms for privacy preserving optimization that reduces the leakage of users' identity in model training. This paper studies the convergence properties of these algorithms in a performative prediction setting, where the data distribution may shift due to the deployed prediction model. For example, the latter is caused by strategical users during the training of loan policy for banks. Our contributions are two-fold. First, we show that the straightforward implementation of a projected clipped SGD (PCSGD) algorithm may converge to a biased solution compared to the performative stable solution. We quantify the lower and upper bound for the magnitude of the bias and demonstrate a bias amplification phenomenon where the bias grows with the sensitivity of the data distribution. Second, we suggest two remedies to the bias amplification effect. The first one utilizes an optimal step size design for PCSGD that takes the privacy guarantee into account. The second one uses the recently proposed DiceSGD algorithm [Zhang et al., 2024]. We show that the latter can successfully remove the bias and converge to the performative stable solution. Numerical experiments verify our analysis.
Related papers
- CURATE: Scaling-up Differentially Private Causal Graph Discovery [8.471466670802817]
Differential Privacy (DP) has been adopted to ensure user privacy in Causal Graph Discovery (CGD)
We present CURATE, a DP-CGD framework with adaptive privacy budgeting.
We show that CURATE achieves higher utility compared to existing DP-CGD algorithms with less privacy-leakage.
arXiv Detail & Related papers (2024-09-27T18:00:38Z) - Bias-Aware Minimisation: Understanding and Mitigating Estimator Bias in
Private SGD [56.01810892677744]
We show a connection between per-sample gradient norms and the estimation bias of the private gradient oracle used in DP-SGD.
We propose Bias-Aware Minimisation (BAM) that allows for the provable reduction of private gradient estimator bias.
arXiv Detail & Related papers (2023-08-23T09:20:41Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
We study the Differentially private (DP) convex optimization problem with streaming data sampled from a distribution and arrives sequentially.
We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms.
Our algorithm achieves in linear time the optimal excess risk when $1pleq 2$ and the state-of-the-art excess risk meeting the non-private lower ones when $2pleqinfty$.
arXiv Detail & Related papers (2022-06-16T12:09:47Z) - Bayes DistNet -- A Robust Neural Network for Algorithm Runtime
Distribution Predictions [1.8275108630751844]
Randomized algorithms are used in many state-of-the-art solvers for constraint satisfaction problems (CSP) and Boolean satisfiability (SAT) problems.
Previous state-of-the-art methods directly try to predict a fixed parametric distribution that the input instance follows.
This new model achieves robust predictive performance in the low observation setting, as well as handling censored observations.
arXiv Detail & Related papers (2020-12-14T01:15:39Z) - Direction Matters: On the Implicit Bias of Stochastic Gradient Descent
with Moderate Learning Rate [105.62979485062756]
This paper attempts to characterize the particular regularization effect of SGD in the moderate learning rate regime.
We show that SGD converges along the large eigenvalue directions of the data matrix, while GD goes after the small eigenvalue directions.
arXiv Detail & Related papers (2020-11-04T21:07:52Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
We prove that our algorithms require a number of evaluations gradient independent of training set size and number of parameters.
Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
arXiv Detail & Related papers (2020-10-12T17:41:44Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - When Does Preconditioning Help or Hurt Generalization? [74.25170084614098]
We show how the textitimplicit bias of first and second order methods affects the comparison of generalization properties.
We discuss several approaches to manage the bias-variance tradeoff, and the potential benefit of interpolating between GD and NGD.
arXiv Detail & Related papers (2020-06-18T17:57:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.