Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping
- URL: http://arxiv.org/abs/2206.13011v4
- Date: Tue, 10 Sep 2024 04:11:27 GMT
- Title: Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping
- Authors: Chenhan Jin, Kaiwen Zhou, Bo Han, James Cheng, Tieyong Zeng,
- Abstract summary: We consider differentially private convex optimization for heavy-tailed data with the guarantee of being differentially private (DP)
We establish new convergence results and improved complexity bounds for the proposed algorithm called AClipped-dpSGD for constrained and unconstrained convex problems.
- Score: 40.69950711262191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider stochastic convex optimization for heavy-tailed data with the guarantee of being differentially private (DP). Most prior works on differentially private stochastic convex optimization for heavy-tailed data are either restricted to gradient descent (GD) or performed multi-times clipping on stochastic gradient descent (SGD), which is inefficient for large-scale problems. In this paper, we consider a one-time clipping strategy and provide principled analyses of its bias and private mean estimation. We establish new convergence results and improved complexity bounds for the proposed algorithm called AClipped-dpSGD for constrained and unconstrained convex problems. We also extend our convergent analysis to the strongly convex case and non-smooth case (which works for generalized smooth objectives with H$\ddot{\text{o}}$lder-continuous gradients). All the above results are guaranteed with a high probability for heavy-tailed data. Numerical experiments are conducted to justify the theoretical improvement.
Related papers
- Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Using Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) to ensure Differential Privacy (DP) comes at the cost of model performance degradation.
We propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC.
We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R'enyi DP.
arXiv Detail & Related papers (2023-11-24T17:56:44Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Dimension Independent Generalization of DP-SGD for Overparameterized
Smooth Convex Optimization [24.644583626705742]
This paper considers the generalization performance of differentially private convex learning.
We demonstrate that the convergence analysis of Langevin algorithms can be used to obtain new generalization bounds with differential privacy guarantees for DP-SGD.
arXiv Detail & Related papers (2022-06-03T22:03:05Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses [52.039438701530905]
We provide sharp upper and lower bounds for several forms of gradient descent (SGD) on arbitrary Lipschitz nonsmooth convex losses.
Our bounds allow us to derive a new algorithm for differentially private nonsmooth convex optimization with optimal excess population risk.
arXiv Detail & Related papers (2020-06-12T02:45:21Z) - The Strength of Nesterov's Extrapolation in the Individual Convergence
of Nonsmooth Optimization [0.0]
We prove that Nesterov's extrapolation has the strength to make the individual convergence of gradient descent methods optimal for nonsmooth problems.
We give an extension of the derived algorithms to solve regularized learning tasks with nonsmooth losses in settings.
Our method is applicable as an efficient tool for solving large-scale $l$1-regularized hinge-loss learning problems.
arXiv Detail & Related papers (2020-06-08T03:35:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.