CORE: Data Augmentation for Link Prediction via Information Bottleneck
- URL: http://arxiv.org/abs/2404.11032v1
- Date: Wed, 17 Apr 2024 03:20:42 GMT
- Title: CORE: Data Augmentation for Link Prediction via Information Bottleneck
- Authors: Kaiwen Dong, Zhichun Guo, Nitesh V. Chawla,
- Abstract summary: Link prediction (LP) is a fundamental task in graph representation learning.
We propose a novel data augmentation method, COmplete and REduce (CORE) to learn compact and predictive augmentations for LP models.
- Score: 25.044734252779975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Link prediction (LP) is a fundamental task in graph representation learning, with numerous applications in diverse domains. However, the generalizability of LP models is often compromised due to the presence of noisy or spurious information in graphs and the inherent incompleteness of graph data. To address these challenges, we draw inspiration from the Information Bottleneck principle and propose a novel data augmentation method, COmplete and REduce (CORE) to learn compact and predictive augmentations for LP models. In particular, CORE aims to recover missing edges in graphs while simultaneously removing noise from the graph structures, thereby enhancing the model's robustness and performance. Extensive experiments on multiple benchmark datasets demonstrate the applicability and superiority of CORE over state-of-the-art methods, showcasing its potential as a leading approach for robust LP in graph representation learning.
Related papers
- Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
We introduce a novel method that enables Graph Neural Networks (GNNs) to glean insights from specialized diminutive causal structures.
Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures.
arXiv Detail & Related papers (2024-06-13T00:18:20Z) - Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition [4.041834517339835]
We propose a novel knowledge graph that incorporates tensor decomposition within the aggregation function of Graph Conalvolution Network (R-GCN)
Our model enhances the representation of neighboring entities by employing projection matrices of a low-rank tensor defined by relation types.
We adopt a training strategy inspired by contrastive learning to relieve the training limitation of the 1-k-k encoder method inherent in handling vast graphs.
arXiv Detail & Related papers (2022-12-11T19:07:34Z) - Adversarial Cross-View Disentangled Graph Contrastive Learning [30.97720522293301]
We introduce ACDGCL, which follows the information bottleneck principle to learn minimal yet sufficient representations from graph data.
We empirically demonstrate that our proposed model outperforms the state-of-the-arts on graph classification task over multiple benchmark datasets.
arXiv Detail & Related papers (2022-09-16T03:48:39Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
We propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects.
RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders.
arXiv Detail & Related papers (2022-08-18T01:31:25Z) - Mitigating the Performance Sacrifice in DP-Satisfied Federated Settings
through Graph Contrastive Learning [43.73753083910439]
We investigate how differential privacy (DP) can be implemented on graph edges and observe a performance decrease.
Inspired by this, we propose leveraging graph contrastive learning to alleviate the performance drop resulting from DP.
Extensive experiments conducted with four representative graph models on five widely used benchmark datasets show that contrastive learning indeed alleviates the models' DP-induced performance drops.
arXiv Detail & Related papers (2022-07-24T22:48:51Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Recognizing Predictive Substructures with Subgraph Information
Bottleneck [97.19131149357234]
We propose a novel subgraph information bottleneck (SIB) framework to recognize such subgraphs, named IB-subgraph.
Intractability of mutual information and the discrete nature of graph data makes the objective of SIB notoriously hard to optimize.
Experiments on graph learning and large-scale point cloud tasks demonstrate the superior property of IB-subgraph.
arXiv Detail & Related papers (2021-03-20T11:19:43Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.