Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition
- URL: http://arxiv.org/abs/2212.05581v4
- Date: Sat, 21 Sep 2024 05:34:50 GMT
- Title: Efficient Relation-aware Neighborhood Aggregation in Graph Neural Networks via Tensor Decomposition
- Authors: Peyman Baghershahi, Reshad Hosseini, Hadi Moradi,
- Abstract summary: We propose a novel knowledge graph that incorporates tensor decomposition within the aggregation function of Graph Conalvolution Network (R-GCN)
Our model enhances the representation of neighboring entities by employing projection matrices of a low-rank tensor defined by relation types.
We adopt a training strategy inspired by contrastive learning to relieve the training limitation of the 1-k-k encoder method inherent in handling vast graphs.
- Score: 4.041834517339835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous Graph Neural Networks (GNNs) have been developed to tackle the challenge of Knowledge Graph Embedding (KGE). However, many of these approaches overlook the crucial role of relation information and inadequately integrate it with entity information, resulting in diminished expressive power. In this paper, we propose a novel knowledge graph encoder that incorporates tensor decomposition within the aggregation function of Relational Graph Convolutional Network (R-GCN). Our model enhances the representation of neighboring entities by employing projection matrices of a low-rank tensor defined by relation types. This approach facilitates multi-task learning, thereby generating relation-aware representations. Furthermore, we introduce a low-rank estimation technique for the core tensor through CP decomposition, which effectively compresses and regularizes our model. We adopt a training strategy inspired by contrastive learning, which relieves the training limitation of the 1-N method inherent in handling vast graphs. We outperformed all our competitors on two common benchmark datasets, FB15k-237 and WN18RR, while using low-dimensional embeddings for entities and relations.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Tensor-view Topological Graph Neural Network [16.433092191206534]
Graph neural networks (GNNs) have recently gained growing attention in graph learning.
Existing GNNs only use local information from a very limited neighborhood around each node.
We propose a novel Topological Graph Neural Network (TTG-NN), a class of simple yet effective deep learning.
Real data experiments show that the proposed TTG-NN outperforms 20 state-of-the-art methods on various graph benchmarks.
arXiv Detail & Related papers (2024-01-22T14:55:01Z) - Redundancy-Free Self-Supervised Relational Learning for Graph Clustering [13.176413653235311]
We propose a novel self-supervised deep graph clustering method named Redundancy-Free Graph Clustering (R$2$FGC)
It extracts the attribute- and structure-level relational information from both global and local views based on an autoencoder and a graph autoencoder.
Our experiments are performed on widely used benchmark datasets to validate the superiority of our R$2$FGC over state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-09T06:18:50Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Bridging Graph Neural Networks and Statistical Relational Learning:
Relational One-Class GCN [0.0]
We consider the problem of learning Graph Convolutional Networks (GCNs) for relational data.
Our method constructs a secondary graph using relational density estimation techniques.
arXiv Detail & Related papers (2021-02-13T21:34:44Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
We argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning.
We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs)
We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator.
arXiv Detail & Related papers (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.