論文の概要: Offset Unlearning for Large Language Models
- arxiv url: http://arxiv.org/abs/2404.11045v1
- Date: Wed, 17 Apr 2024 03:39:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 15:24:20.881931
- Title: Offset Unlearning for Large Language Models
- Title(参考訳): 大規模言語モデルのためのオフセットアンラーニング
- Authors: James Y. Huang, Wenxuan Zhou, Fei Wang, Fred Morstatter, Sheng Zhang, Hoifung Poon, Muhao Chen,
- Abstract要約: アンラーニングは、問題のあるトレーニングデータに影響された大規模言語モデルの潜在的な治療法として浮上した。
ブラックボックスLLMのためのオフセットアンラーニングフレームワークである$delta$-unlearningを提案する。
実験によると、$delta$-unlearningは、一般的なアウトオブスコープタスクにおいて、同じような、あるいはより強力なパフォーマンスを維持しながら、ターゲットデータを効果的に解放することができる。
- 参考スコア(独自算出の注目度): 49.851093293780615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the strong capabilities of Large Language Models (LLMs) to acquire knowledge from their training corpora, the memorization of sensitive information in the corpora such as copyrighted, harmful, and private content has led to ethical and legal concerns. In response to these challenges, unlearning has emerged as a potential remedy for LLMs affected by problematic training data. However, previous unlearning techniques are either not applicable to black-box LLMs due to required access to model internal weights, or violate data protection principles by retaining sensitive data for inference-time correction. We propose $\delta$-unlearning, an offset unlearning framework for black-box LLMs. Instead of tuning the black-box LLM itself, $\delta$-unlearning learns the logit offset needed for unlearning by contrasting the logits from a pair of smaller models. Experiments demonstrate that $\delta$-unlearning can effectively unlearn target data while maintaining similar or even stronger performance on general out-of-forget-scope tasks. $\delta$-unlearning also effectively incorporates different unlearning algorithms, making our approach a versatile solution to adapting various existing unlearning algorithms to black-box LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)が学習コーパスから知識を得る能力は強いが、著作権、有害、私的コンテンツなどのコーパスにおけるセンシティブな情報の記憶は倫理的、法的懸念を引き起こしている。
これらの課題に応えて、未学習は、問題のあるトレーニングデータによって影響を受けるLSMの潜在的治療として現れている。
しかし、従来の未学習の手法は、モデル内部の重みへの必要なアクセスのためにブラックボックスのLSMには適用できないか、あるいは推論時間補正のための機密データを保持することによってデータ保護の原則に違反している。
ブラックボックスLLMのためのオフセットアンラーニングフレームワークである$\delta$-unlearningを提案する。
Black-box LLM自体をチューニングする代わりに、$\delta$-unlearningは、より小さなモデルのロジットを対比することで、アンラーニングに必要なロジットオフセットを学習する。
実験によると、$\delta$-unlearningは、一般的なアウトオブスコープタスクにおいて、同じような、あるいはより強力なパフォーマンスを維持しながら、ターゲットデータを効果的に解放することができる。
$\delta$-unlearningはまた、異なる未学習アルゴリズムを効果的に組み込むことで、既存の未学習アルゴリズムをブラックボックスLLMに適応させる汎用的なソリューションになります。
関連論文リスト
- WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models [26.07431044262102]
本稿では,大規模言語モデル(LLM)におけるモデルウェイトと未学習プロセスの相互作用について考察する。
重みの「影響」と「影響」とを相互に関連付けることによって,重みの「影響」を記憶・保持するLLMアンラーニング手法であるWAGLEを設計する。
論文 参考訳(メタデータ) (2024-10-23T02:22:07Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
大型言語モデル(LLM)は機密または著作権のあるコンテンツを記憶し、プライバシーと法的懸念を高める。
LLMの機械学習におけるいくつかの問題について議論し、可能なアプローチについての洞察を提供する。
論文 参考訳(メタデータ) (2024-10-10T16:56:05Z) - CodeUnlearn: Amortized Zero-Shot Machine Unlearning in Language Models Using Discrete Concept [5.345828824625758]
コードブック機能とスパースオートエンコーダ(SAEs)を用いた新しいアンラーニング手法を提案する。
ボトルネックを利用して、アクティベーション空間を分解し、情報の流れを規制することにより、モデルの性能を無関係なデータに保ちながら、ターゲットとなる情報を効率的に解き放つ。
論文 参考訳(メタデータ) (2024-10-08T10:26:22Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtendは、Mixture-of-Experts (MoE)モデルのモダリティ適応と拡張を効率化する効果的なフレームワークである。
MoExtendは、新しいエキスパートをトレーニング済みのMoEモデルにシームレスに統合し、トレーニング済みのモデルをチューニングすることなく、新しい知識を提供する。
論文 参考訳(メタデータ) (2024-08-07T02:28:37Z) - Split, Unlearn, Merge: Leveraging Data Attributes for More Effective Unlearning in LLMs [18.629717934007513]
SPUNGE(SPlit, UNlearn, MerGE)は,任意のアンラーニング手法を用いて有効性を増幅するフレームワークである。
我々はSPUNGEが最近の2つの非学習手法の性能を大幅に向上させることを実証的に実証した。
論文 参考訳(メタデータ) (2024-06-17T17:35:52Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
大規模言語モデル(LLM)の領域における機械学習の研究
このイニシアチブは、望ましくないデータの影響(機密情報や違法情報など)と関連するモデル機能を排除することを目的としている。
論文 参考訳(メタデータ) (2024-02-13T20:51:58Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。