論文の概要: Unified Examination of Entity Linking in Absence of Candidate Sets
- arxiv url: http://arxiv.org/abs/2404.11061v1
- Date: Wed, 17 Apr 2024 04:37:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 15:14:36.524050
- Title: Unified Examination of Entity Linking in Absence of Candidate Sets
- Title(参考訳): 候補集合の存在下でのエンティティリンクの統一的検証
- Authors: Nicolas Ong, Hassan Shavarani, Anoop Sarkar,
- Abstract要約: 本稿では,エンティティリンクの性能に及ぼす候補集合の影響について,アブレーション研究を用いて検討する。
制約の少ない候補集合間のトレードオフ、推論時間の増加、いくつかのモデルのメモリフットプリントを示す。
- 参考スコア(独自算出の注目度): 3.55026004901472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite remarkable strides made in the development of entity linking systems in recent years, a comprehensive comparative analysis of these systems using a unified framework is notably absent. This paper addresses this oversight by introducing a new black-box benchmark and conducting a comprehensive evaluation of all state-of-the-art entity linking methods. We use an ablation study to investigate the impact of candidate sets on the performance of entity linking. Our findings uncover exactly how much such entity linking systems depend on candidate sets, and how much this limits the general applicability of each system. We present an alternative approach to candidate sets, demonstrating that leveraging the entire in-domain candidate set can serve as a viable substitute for certain models. We show the trade-off between less restrictive candidate sets, increased inference time and memory footprint for some models.
- Abstract(参考訳): 近年のエンティティ・リンク・システムの発展に顕著な進展があったが、統合されたフレームワークを用いた包括的な比較分析は特に欠落している。
本稿では,新しいブラックボックスベンチマークを導入し,すべての最先端エンティティリンク手法を包括的に評価することで,この監視に対処する。
本稿では,エンティティリンクの性能に及ぼす候補集合の影響について,アブレーション研究を用いて検討する。
以上の結果から,このようなエンティティ・リンク・システムがどの程度候補集合に依存しているか,また,それぞれのシステムの適用性にどの程度の制限があるかが明らかとなった。
候補集合に対する代替的アプローチを提案し、ドメイン内候補集合全体の活用が、あるモデルに対して実行可能な代用となることを実証する。
制約の少ない候補集合間のトレードオフ、推論時間の増加、いくつかのモデルのメモリフットプリントを示す。
関連論文リスト
- Coherent Entity Disambiguation via Modeling Topic and Categorical
Dependency [87.16283281290053]
従来のエンティティ曖昧化(ED)メソッドは、参照コンテキストと候補エンティティの一致するスコアに基づいて予測を行う、識別パラダイムを採用している。
本稿では,エンティティ予測のコヒーレンス向上を目的とした新しいデザインを備えたEDシステムであるCoherentedを提案する。
我々は、人気EDベンチマークにおいて、平均1.3F1ポイントの改善により、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-11-06T16:40:13Z) - Summarization from Leaderboards to Practice: Choosing A Representation
Backbone and Ensuring Robustness [21.567112955050582]
自動評価と人的評価の両方において、BARTはPEGやT5よりも優れている。
システム出力のかなりのばらつきは、人間の評価でのみ捉えられる。
論文 参考訳(メタデータ) (2023-06-18T13:35:41Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - Proxy-based Zero-Shot Entity Linking by Effective Candidate Retrieval [3.1498833540989413]
本稿では, 逆正則化器とプロキシベースのメトリック学習損失のペアリングが, 候補探索段階における強負サンプリングの効率的な代替手段となることを示す。
特に、リコール@1メートル法で競合性能を示すため、高価な候補ランキングのステップを除外するオプションを提供する。
論文 参考訳(メタデータ) (2023-01-30T22:43:21Z) - Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic
Learning [53.73316523766183]
コアレゾリューションシステムは2つの主要なタスクに取り組む必要がある。
ひとつのタスクは、潜在的な言及のすべてを検出することであり、もう1つは、可能な言及ごとに前者のリンクを学習することである。
本稿では,アクター・クリティカル・ラーニングに基づく複合ルール・ニューラル・コア参照解決システムを提案する。
論文 参考訳(メタデータ) (2022-12-20T08:55:47Z) - Relational Proxies: Emergent Relationships as Fine-Grained
Discriminators [52.17542855760418]
本稿では,オブジェクトのグローバル部分とローカル部分の間の情報を利用してラベルを符号化する手法を提案する。
我々は、理論的な結果に基づいてプロキシを設計し、7つの挑戦的なきめ細かいベンチマークデータセットに基づいて評価する。
また、この理論を実験的に検証し、複数のベンチマークで一貫した結果を得る。
論文 参考訳(メタデータ) (2022-10-05T11:08:04Z) - Are We There Yet? A Decision Framework for Replacing Term Based
Retrieval with Dense Retrieval Systems [35.77217529138364]
いくつかの高密度検索(DR)モデルは、項ベース検索と競合する性能を示した。
DRはクエリとドキュメントを高密度なベクトル空間に投影し、(近似した)近接探索によって結果を検索する。
将来DRがユビキタスになるかどうかを予測することは不可能だが、この方法の1つは意思決定プロセスの繰り返し適用を通じて可能である。
論文 参考訳(メタデータ) (2022-06-26T23:16:05Z) - UniCon: Unified Context Network for Robust Active Speaker Detection [111.90529347692723]
我々は、堅牢なアクティブ話者検出(ASD)のための新しい効率的なフレームワークUnified Context Network(UniCon)を導入する。
私たちのソリューションは、複数の種類のコンテキスト情報を共同でモデリングすることに焦点を当てた、新しく統合されたフレームワークです。
異なる設定下で、いくつかの挑戦的なASDベンチマークで徹底的なアブレーション研究が実施されている。
論文 参考訳(メタデータ) (2021-08-05T13:25:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。