論文の概要: Synthesizing Realistic Data for Table Recognition
- arxiv url: http://arxiv.org/abs/2404.11100v2
- Date: Tue, 9 Jul 2024 12:09:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 23:31:18.807928
- Title: Synthesizing Realistic Data for Table Recognition
- Title(参考訳): テーブル認識のための実データ合成
- Authors: Qiyu Hou, Jun Wang, Meixuan Qiao, Lujun Tian,
- Abstract要約: 本稿では,テーブル認識に特化して設計されたアノテーションデータを合成する手法を提案する。
中国の金融発表から表の構造と内容を活用することで、我々は最初の広範囲な表アノテーションデータセットを開発した。
我々は、中国の金融発表領域における実世界の複合表の初歩的ベンチマークを確立し、このベンチマークを用いて、我々の合成データに基づいてトレーニングされたモデルの性能を評価する。
- 参考スコア(独自算出の注目度): 4.500373384879752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To overcome the limitations and challenges of current automatic table data annotation methods and random table data synthesis approaches, we propose a novel method for synthesizing annotation data specifically designed for table recognition. This method utilizes the structure and content of existing complex tables, facilitating the efficient creation of tables that closely replicate the authentic styles found in the target domain. By leveraging the actual structure and content of tables from Chinese financial announcements, we have developed the first extensive table annotation dataset in this domain. We used this dataset to train several recent deep learning-based end-to-end table recognition models. Additionally, we have established the inaugural benchmark for real-world complex tables in the Chinese financial announcement domain, using it to assess the performance of models trained on our synthetic data, thereby effectively validating our method's practicality and effectiveness. Furthermore, we applied our synthesis method to augment the FinTabNet dataset, extracted from English financial announcements, by increasing the proportion of tables with multiple spanning cells to introduce greater complexity. Our experiments show that models trained on this augmented dataset achieve comprehensive improvements in performance, especially in the recognition of tables with multiple spanning cells.
- Abstract(参考訳): そこで本研究では,従来の自動表データアノテーション手法と乱数表データ合成手法の限界と課題を克服するために,テーブル認識に特化して設計されたアノテーションデータを合成する手法を提案する。
この方法は、既存の複雑なテーブルの構造と内容を利用することで、ターゲット領域にある真のスタイルを忠実に再現するテーブルの効率的な作成を容易にする。
中国の金融発表からテーブルの実際の構造と内容を活用することで、この領域で最初の広範なテーブルアノテーションデータセットを開発した。
このデータセットを使用して、最近のディープラーニングベースのエンドツーエンドテーブル認識モデルをトレーニングしました。
さらに,中国の金融発表領域における実世界の複合表の初歩的ベンチマークを構築し,その手法を用いて,合成データに基づいてトレーニングしたモデルの性能評価を行い,本手法の実用性と有効性を効果的に検証した。
さらに,複数のスパンニングセルを持つテーブルの比率を増大させることにより,FinTabNetデータセットを英語の財務発表から抽出し,複雑さを増すために合成手法を適用した。
実験により, このデータセットでトレーニングしたモデルは, 特に複数のスパンニングセルを持つテーブルの認識において, 総合的な性能向上を実現することが示された。
関連論文リスト
- Tree-of-Table: Unleashing the Power of LLMs for Enhanced Large-Scale Table Understanding [42.841205217768106]
トレー・オブ・タブル(Tree-of-Table)は、LLMが大規模で複雑なテーブル上での推論能力を高めるために設計された新しいアプローチである。
Tree-of-Tableは優れた性能を持つ新しいベンチマークをセットし、大規模テーブル推論における顕著な効率性と一般化能力を示す。
論文 参考訳(メタデータ) (2024-11-13T11:02:04Z) - Enhancing Table Representations with LLM-powered Synthetic Data Generation [0.565395466029518]
データ駆動型企業におけるデータ変換活動の文脈における表の類似性を明確に定義する。
本稿では,大規模言語モデルのコード生成とデータ操作機能を活用した,新しい合成データ生成パイプラインを提案する。
パイプラインによって生成された合成データは,提案した表類似性の定義と一致し,表表現を大幅に強化することを示す。
論文 参考訳(メタデータ) (2024-11-04T19:54:07Z) - TableRAG: Million-Token Table Understanding with Language Models [53.039560091592215]
TableRAG(TableRAG)は、LMベースのテーブル理解用に特別に設計された検索拡張生成(RAG)フレームワークである。
TableRAGは、スキーマとセル検索を組み合わせたクエリ拡張を活用して、LMにそれを提供する前に重要な情報をピンポイントする。
以上の結果から,TableRAGは検索精度が向上し,大規模テーブル理解における最先端性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-07T04:15:02Z) - UniTabNet: Bridging Vision and Language Models for Enhanced Table Structure Recognition [55.153629718464565]
我々は、画像からテキストへのモデルに基づくテーブル構造解析のための新しいフレームワークUniTabNetを紹介する。
UniTabNetは、画像とテキストのモデルを使ってテーブルセルを分離し、物理デコーダと論理デコーダを統合して完全なテーブル構造を再構築する。
論文 参考訳(メタデータ) (2024-09-20T01:26:32Z) - Latent Diffusion for Guided Document Table Generation [4.891597567642704]
本研究は,テーブル構造のための注釈付き画像を生成するための新しいアプローチを提案する。
提案手法は,物体検出モデルの訓練に使用される合成データの質を高めることを目的としている。
実験により, 提案手法は, 学習用合成データの品質を著しく向上させることを示した。
論文 参考訳(メタデータ) (2024-08-19T08:46:16Z) - Wiki-TabNER:Advancing Table Interpretation Through Named Entity
Recognition [19.423556742293762]
TIタスクの評価に広く用いられているベンチマークデータセットを分析した。
この欠点を克服するため、我々はより困難なデータセットを構築し、注釈付けします。
本稿では,新たに開発された大規模言語モデルを評価するためのプロンプトフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T15:22:07Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - Privately generating tabular data using language models [80.67328256105891]
テーブルからプライベートに合成データを生成することは、プライバシ優先の世界の重要なブロックである。
本稿では,テーブル内の各行を文として扱い,差分プライバシーを持つ言語モデルを訓練する簡単な手法を提案し,検討する。
論文 参考訳(メタデータ) (2023-06-07T21:53:14Z) - TCN: Table Convolutional Network for Web Table Interpretation [52.32515851633981]
テーブル内情報とテーブル間情報の両方を考慮した新しいテーブル表現学習手法を提案する。
カラムタイプ予測ではf1の4.8%、カラム対関係予測ではf1の4.1%で競合ベースラインを上回ることができる。
論文 参考訳(メタデータ) (2021-02-17T02:18:10Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。