Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales
- URL: http://arxiv.org/abs/2404.11129v2
- Date: Mon, 5 Aug 2024 12:39:06 GMT
- Title: Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales
- Authors: Minghe Gao, Shuang Chen, Liang Pang, Yuan Yao, Jisheng Dang, Wenqiao Zhang, Juncheng Li, Siliang Tang, Yueting Zhuang, Tat-Seng Chua,
- Abstract summary: We introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs.
We filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability.
Our approach also reduces hallucinations owing to its high correlation between images and text.
- Score: 102.54274021830207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable performance of Multimodal Large Language Models (MLLMs) has unequivocally demonstrated their proficient understanding capabilities in handling a wide array of visual tasks. Nevertheless, the opaque nature of their black-box reasoning processes persists as an enigma, rendering them uninterpretable and struggling with hallucination. Their ability to execute intricate compositional reasoning tasks is also constrained, culminating in a stagnation of learning progression for these models. In this work, we introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs. This paradigm utilizes verifiable visual programming to generate executable code guaranteeing faithfulness and precision. Subsequently, through a series of operations including pruning, merging, and bridging, the rationale enhances its conciseness. Furthermore, we filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability. Empirical evidence from experiments demonstrates the superiority of our method across models of varying parameter sizes, significantly enhancing their compositional reasoning and generalization ability. Our approach also reduces hallucinations owing to its high correlation between images and text.
Related papers
- Thinking Before Looking: Improving Multimodal LLM Reasoning via Mitigating Visual Hallucination [13.706325901731665]
Multimodal large language models (MLLMs) have advanced the integration of visual and linguistic modalities.
Current approaches like chain of thought (CoT) reasoning have augmented the cognitive capabilities of large language models (LLMs)
But their adaptation to MLLMs is hindered by heightened risks of hallucination in cross-modality comprehension.
arXiv Detail & Related papers (2024-11-15T21:01:37Z) - Improving Factuality in Large Language Models via Decoding-Time Hallucinatory and Truthful Comparators [14.705475420665117]
Large Language Models (LLMs) are prone to generate responses that contradict verifiable facts.
We propose a Comparator-driven Decoding-Time (CDT) framework to alleviate the response hallucination.
arXiv Detail & Related papers (2024-08-22T12:00:31Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
We introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE)
Our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs.
arXiv Detail & Related papers (2024-06-04T03:04:21Z) - RITUAL: Random Image Transformations as a Universal Anti-hallucination Lever in LVLMs [16.185253476874006]
We propose a simple, training-free method termed RITUAL to enhance robustness against hallucinations in LVLMs.
Our approach employs random image transformations as complements to the original probability distribution.
Our empirical results show that while the isolated use of transformed images initially degrades performance, strategic implementation of these transformations can indeed serve as effective complements.
arXiv Detail & Related papers (2024-05-28T04:41:02Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Towards Uncovering How Large Language Model Works: An Explainability Perspective [38.07611356855978]
Large language models (LLMs) have led to breakthroughs in language tasks, yet the internal mechanisms that enable their remarkable generalization and reasoning abilities remain opaque.
This paper aims to uncover the mechanisms underlying LLM functionality through the lens of explainability.
arXiv Detail & Related papers (2024-02-16T13:46:06Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
Large language models (LLMs) have shown remarkable capabilities in various natural language understanding tasks.
We propose EASE, an Explanation-Aware Soft Ensemble framework to empower in-context learning with LLMs.
arXiv Detail & Related papers (2023-11-13T06:13:38Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.