CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models
- URL: http://arxiv.org/abs/2406.01920v1
- Date: Tue, 4 Jun 2024 03:04:21 GMT
- Title: CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models
- Authors: Junho Kim, Hyunjun Kim, Yeonju Kim, Yong Man Ro,
- Abstract summary: We introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE)
Our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs.
- Score: 51.70129969269271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Multi-modal Models (LMMs) have recently demonstrated remarkable abilities in visual context understanding and coherent response generation. However, alongside these advancements, the issue of hallucinations has emerged as a significant challenge, producing erroneous responses that are unrelated to the visual contents. In this paper, we introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE), which leverages self-generated descriptions as contrasting references during the decoding phase of LMMs to address hallucination issues. CODE utilizes the comprehensive descriptions from model itself as visual counterpart to correct and improve response alignment with actual visual content. By dynamically adjusting the information flow and distribution of next-token predictions in the LMM's vocabulary, CODE enhances the coherence and informativeness of generated responses. Extensive experiments demonstrate that our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs. Our method provides a simple yet effective decoding strategy that can be integrated to existing LMM frameworks without additional training.
Related papers
- Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.
We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.
LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.
We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - Beyond Logit Lens: Contextual Embeddings for Robust Hallucination Detection & Grounding in VLMs [3.8318712731382054]
We introduce ContextualLens, a refined method that leverages contextual token embeddings from middle layers of LMMs.
This approach significantly improves hallucination detection and grounding across diverse categories, including actions and OCR.
Our contributions pave the way for more reliable and interpretable multimodal models.
arXiv Detail & Related papers (2024-11-28T14:47:55Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales [102.54274021830207]
We introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs.
We filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability.
Our approach also reduces hallucinations owing to its high correlation between images and text.
arXiv Detail & Related papers (2024-04-17T07:20:56Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
Over-reliance on linguistic priors has been identified as a key factor leading to hallucinations.
We propose to alleviate this problem by introducing a novel image-biased decoding technique.
Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM.
arXiv Detail & Related papers (2024-02-28T16:57:22Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.