Low-Cost Language Models: Survey and Performance Evaluation on Python Code Generation
- URL: http://arxiv.org/abs/2404.11160v2
- Date: Thu, 29 Aug 2024 13:23:15 GMT
- Title: Low-Cost Language Models: Survey and Performance Evaluation on Python Code Generation
- Authors: Jessica López Espejel, Mahaman Sanoussi Yahaya Alassan, Merieme Bouhandi, Walid Dahhane, El Hassane Ettifouri,
- Abstract summary: Large Language Models (LLMs) have become a popular choice for many Natural Language Processing (NLP) tasks.
LLMs' substantial computational and memory requirements often make them inaccessible to users with limited resources.
This paper focuses on very low-cost models which offer a more accessible alternative to resource-intensive LLMs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) have become a popular choice for many Natural Language Processing (NLP) tasks due to their versatility and ability to produce high-quality results. Specifically, they are increasingly used for automatic code generation to help developers tackle repetitive coding tasks. However, LLMs' substantial computational and memory requirements often make them inaccessible to users with limited resources. This paper focuses on very low-cost models which offer a more accessible alternative to resource-intensive LLMs. We notably: (1) propose a thorough semi-manual evaluation of their performance in generating Python code, (2) introduce a Chain-of-Thought (CoT) prompting strategy to improve model reasoning and code quality, and (3) propose a new dataset of 60 programming problems, with varied difficulty levels, designed to extend existing benchmarks like HumanEval and EvalPlus. Our findings show that some low-cost compatible models achieve competitive results compared to larger models like ChatGPT despite using significantly fewer resources. We will make our dataset and prompts publicly available to support further research.
Related papers
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning, tasks and agent systems.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an open cookbook'' for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - An Empirical Study on Self-correcting Large Language Models for Data Science Code Generation [1.335664823620186]
Large Language Models (LLMs) have recently advanced many applications on software engineering tasks.
CoT-SelfEvolve iteratively and automatically refines code through a self-correcting process.
arXiv Detail & Related papers (2024-08-28T09:19:09Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - PythonSaga: Redefining the Benchmark to Evaluate Code Generating LLMs [1.9207412600219353]
We evaluate two popular benchmarks for Python code generation, analyzing their diversity and difficulty.
Our findings unveil a critical bias towards a limited set of programming concepts, neglecting most of the other concepts entirely.
We propose a novel benchmark, PythonSaga, featuring 185 hand-crafted prompts on a balanced representation of 38 programming concepts.
arXiv Detail & Related papers (2024-01-08T12:36:43Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - GenCodeSearchNet: A Benchmark Test Suite for Evaluating Generalization
in Programming Language Understanding [5.9535699822923]
We propose a new benchmark dataset called GenCodeSearchNet (GeCS) to evaluate the programming language understanding capabilities of language models.
As part of the full dataset, we introduce a new, manually curated subset StatCodeSearch that focuses on R, a popular but so far underrepresented programming language.
For evaluation and comparison, we collect several baseline results using fine-tuned BERT-style models and GPT-style large language models.
arXiv Detail & Related papers (2023-11-16T09:35:00Z) - MEGA: Multilingual Evaluation of Generative AI [23.109803506475174]
Generative AI models have shown impressive performance on many Natural Language Processing tasks.
Most studies on generative LLMs have been restricted to English.
It is unclear how capable these models are at understanding and generating text in other languages.
arXiv Detail & Related papers (2023-03-22T13:03:10Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
We present new benchmarks on evaluation code generation models: MBXP and Multilingual HumanEval, and MathQA-X.
These datasets cover over 10 programming languages.
We are able to assess the performance of code generation models in a multi-lingual fashion.
arXiv Detail & Related papers (2022-10-26T17:17:06Z) - MOROCCO: Model Resource Comparison Framework [61.444083353087294]
We present MOROCCO, a framework to compare language models compatible with ttjiant environment which supports over 50 NLU tasks.
We demonstrate its applicability for two GLUE-like suites in different languages.
arXiv Detail & Related papers (2021-04-29T13:01:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.