An Empirical Study on Self-correcting Large Language Models for Data Science Code Generation
- URL: http://arxiv.org/abs/2408.15658v1
- Date: Wed, 28 Aug 2024 09:19:09 GMT
- Title: An Empirical Study on Self-correcting Large Language Models for Data Science Code Generation
- Authors: Thai Tang Quoc, Duc Ha Minh, Tho Quan Thanh, Anh Nguyen-Duc,
- Abstract summary: Large Language Models (LLMs) have recently advanced many applications on software engineering tasks.
CoT-SelfEvolve iteratively and automatically refines code through a self-correcting process.
- Score: 1.335664823620186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have recently advanced many applications on software engineering tasks, particularly the potential for code generation. Among contemporary challenges, code generated by LLMs often suffers from inaccuracies and hallucinations, requiring external inputs to correct. One recent strategy to fix these issues is to refine the code generated from LLMs using the input from the model itself (self-augmented). In this work, we proposed a novel method, namely CoT-SelfEvolve. CoT-SelfEvolve iteratively and automatically refines code through a self-correcting process, guided by a chain of thought constructed from real-world programming problem feedback. Focusing on data science code, including Python libraries such as NumPy and Pandas, our evaluations on the DS-1000 dataset demonstrate that CoT-SelfEvolve significantly outperforms existing models in solving complex problems. The framework shows substantial improvements in both initial code generation and subsequent iterations, with the model's accuracy increasing significantly with each additional iteration. This highlights the effectiveness of using chain-of-thought prompting to address complexities revealed by program executor traceback error messages. We also discuss how CoT-SelfEvolve can be integrated into continuous software engineering environments, providing a practical solution for improving LLM-based code generation.
Related papers
- LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues [62.12404317786005]
EvoCoder is a continuous learning framework for issue code reproduction.
Our results show a 20% improvement in issue reproduction rates over existing SOTA methods.
arXiv Detail & Related papers (2024-11-21T08:49:23Z) - A Comprehensive Survey of AI-Driven Advancements and Techniques in Automated Program Repair and Code Generation [0.0]
27 recent papers have been reviewed and split into two groups.
The first group consists of new methods for bug detection and repair, which include locating semantic errors.
The second group dwells on code generation, providing an overview of both general-purpose LLMs fine-tuned for programming and task-specific models.
It also presents methods to improve code generation, such as identifier-aware training, fine-tuning at the instruction level, and incorporating semantic code structures.
arXiv Detail & Related papers (2024-11-12T06:47:54Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
Large Language Models (LLMs) have shown incredible potential in code generation tasks.
LLMs can generate code based on task descriptions, but accuracy remains limited.
We introduce a novel architecture of LLM-based agents for code generation and automatic debug: Refinement and Guidance debugger (RGD)
RGD decomposes the code generation task into multiple steps, ensuring a clearer workflow and enabling iterative code refinement based on self-reflection and feedback.
arXiv Detail & Related papers (2024-10-02T05:07:02Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Validating LLM-Generated Programs with Metamorphic Prompt Testing [8.785973653167112]
Large Language Models (LLMs) are increasingly integrated into the software development lifecycle.
This paper proposes a novel solution called metamorphic prompt testing to address these challenges.
Our evaluation on HumanEval shows that metamorphic prompt testing is able to detect 75 percent of the erroneous programs generated by GPT-4, with a false positive rate of 8.6 percent.
arXiv Detail & Related papers (2024-06-11T00:40:17Z) - DeepCode AI Fix: Fixing Security Vulnerabilities with Large Language
Models [3.1690235522182104]
Large language models (LLMs) are increasingly used to solve various programming tasks.
We show that the task is difficult as it requires the model to learn long-range code relationships.
We propose a technique to address these challenges with a new approach for querying and fine-tuning LLMs.
arXiv Detail & Related papers (2024-02-19T18:35:40Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.