LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory
- URL: http://arxiv.org/abs/2404.11163v2
- Date: Thu, 18 Apr 2024 05:50:53 GMT
- Title: LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory
- Authors: Zicheng Liu, Li Wang, Siyuan Li, Zedong Wang, Haitao Lin, Stan Z. Li,
- Abstract summary: Self-attention mechanism's computational cost limits its practicality for long sequences.
We propose a new method called LongVQ to compress the global abstraction as a length-fixed codebook.
LongVQ effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues.
- Score: 63.41820940103348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer models have been successful in various sequence processing tasks, but the self-attention mechanism's computational cost limits its practicality for long sequences. Although there are existing attention variants that improve computational efficiency, they have a limited ability to abstract global information effectively based on their hand-crafted mixing strategies. On the other hand, state-space models (SSMs) are tailored for long sequences but cannot capture complicated local information. Therefore, the combination of them as a unified token mixer is a trend in recent long-sequence models. However, the linearized attention degrades performance significantly even when equipped with SSMs. To address the issue, we propose a new method called LongVQ. LongVQ uses the vector quantization (VQ) technique to compress the global abstraction as a length-fixed codebook, enabling the linear-time computation of the attention matrix. This technique effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues. Our experiments on the Long Range Arena benchmark, autoregressive language modeling, and image and speech classification demonstrate the effectiveness of LongVQ. Our model achieves significant improvements over other sequence models, including variants of Transformers, Convolutions, and recent State Space Models.
Related papers
- Longhorn: State Space Models are Amortized Online Learners [51.10124201221601]
State-space models (SSMs) offer linear decoding efficiency while maintaining parallelism during training.
In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems.
We introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem.
arXiv Detail & Related papers (2024-07-19T11:12:08Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - CItruS: Chunked Instruction-aware State Eviction for Long Sequence Modeling [52.404072802235234]
We introduce Chunked Instruction-aware State Eviction (CItruS), a novel modeling technique that integrates the attention preferences useful for a downstream task into the eviction process of hidden states.
Our training-free method exhibits superior performance on long sequence comprehension and retrieval tasks over several strong baselines under the same memory budget.
arXiv Detail & Related papers (2024-06-17T18:34:58Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
Foundation models are almost universally based on the Transformer architecture and its core attention module.
We identify that a key weakness of such models is their inability to perform content-based reasoning.
We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even blocks (Mamba)
As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics.
arXiv Detail & Related papers (2023-12-01T18:01:34Z) - Efficient Long-Range Transformers: You Need to Attend More, but Not
Necessarily at Every Layer [36.75562615596186]
We propose MASFormer, an easy-to-implement transformer variant with Mixed Attention Spans.
MASFormer is equipped with full attention to capture long-range dependencies, but only at a small number of layers.
Experiments show that a decoder-only MASFormer model of 1.3B parameters can achieve competitive performance to vanilla transformers with full attention.
arXiv Detail & Related papers (2023-10-19T03:32:05Z) - A Unified View of Long-Sequence Models towards Modeling Million-Scale
Dependencies [0.0]
We compare existing solutions to long-sequence modeling in terms of their pure mathematical formulation.
We then demonstrate that long context length does yield better performance, albeit application-dependent.
Inspired by emerging sparse models of huge capacity, we propose a machine learning system for handling million-scale dependencies.
arXiv Detail & Related papers (2023-02-13T09:47:31Z) - Efficient Long Sequence Modeling via State Space Augmented Transformer [92.74707853711374]
We propose SPADE, short for $underlinetextbfS$tate sunderlinetextbfP$ace.
We augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers.
Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-15T20:51:27Z) - Efficiently Modeling Long Sequences with Structured State Spaces [15.456254157293836]
We propose a new sequence model based on a new parameterization for the fundamental state space model.
S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet.
arXiv Detail & Related papers (2021-10-31T03:32:18Z) - Long-Short Transformer: Efficient Transformers for Language and Vision [97.2850205384295]
Long-Short Transformer (Transformer-LS) is an efficient self-attention mechanism for modeling long sequences with linear complexity for both language and vision tasks.
It aggregates a novel long-range attention with dynamic projection to model distant correlations and a short-term attention to capture fine-grained local correlations.
Our method outperforms the state-of-the-art models on multiple tasks in language and vision domains, including the Long Range Arena benchmark, autoregressive language modeling, and ImageNet classification.
arXiv Detail & Related papers (2021-07-05T18:00:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.