Longhorn: State Space Models are Amortized Online Learners
- URL: http://arxiv.org/abs/2407.14207v5
- Date: Wed, 2 Oct 2024 14:32:59 GMT
- Title: Longhorn: State Space Models are Amortized Online Learners
- Authors: Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, Qiang Liu,
- Abstract summary: State-space models (SSMs) offer linear decoding efficiency while maintaining parallelism during training.
In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems.
We introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem.
- Score: 51.10124201221601
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern large language models are built on sequence modeling via next-token prediction. While the Transformer remains the dominant architecture for sequence modeling, its quadratic decoding complexity in sequence length poses a major limitation. State-space models (SSMs) present a competitive alternative, offering linear decoding efficiency while maintaining parallelism during training. However, most existing SSMs rely on linear recurrence designs that appear somewhat ad hoc. In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems. This approach links SSM design to formulating precise online learning objectives, with state transition rules derived from solving these objectives. Based on this insight, we introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem. Our experimental results show that Longhorn outperforms state-of-the-art SSMs, including the Mamba model, on standard sequence modeling benchmarks, language modeling, and vision tasks. Specifically, Longhorn achieves a 1.8x improvement in sample efficiency compared to Mamba, and can extrapolate over contexts that are up to 16x longer during inference.
Related papers
- Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - Oscillatory State-Space Models [61.923849241099184]
We propose Lineary State-Space models (LinOSS) for efficiently learning on long sequences.
A stable discretization, integrated over time using fast associative parallel scans, yields the proposed state-space model.
We show that LinOSS is universal, i.e., it can approximate any continuous and causal operator mapping between time-varying functions.
arXiv Detail & Related papers (2024-10-04T22:00:13Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
Few-shot class-incremental learning (FSCIL) confronts the challenge of integrating new classes into a model with minimal training samples.
Traditional methods widely adopt static adaptation relying on a fixed parameter space to learn from data that arrive sequentially.
We propose a dual selective SSM projector that dynamically adjusts the projection parameters based on the intermediate features for dynamic adaptation.
arXiv Detail & Related papers (2024-07-08T17:09:39Z) - Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models [5.37935922811333]
State Space Models (SSMs) are classical approaches for univariate time series modeling.
We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns.
Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks.
arXiv Detail & Related papers (2024-06-06T17:58:09Z) - LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory [63.41820940103348]
Self-attention mechanism's computational cost limits its practicality for long sequences.
We propose a new method called LongVQ to compress the global abstraction as a length-fixed codebook.
LongVQ effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues.
arXiv Detail & Related papers (2024-04-17T08:26:34Z) - The Hidden Attention of Mamba Models [54.50526986788175]
The Mamba layer offers an efficient selective state space model (SSM) that is highly effective in modeling multiple domains.
We show that such models can be viewed as attention-driven models.
This new perspective enables us to empirically and theoretically compare the underlying mechanisms to that of the self-attention layers in transformers.
arXiv Detail & Related papers (2024-03-03T18:58:21Z) - Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks [25.092302463435523]
State-space models (SSMs) have been proposed as alternatives to Transformer networks in language modeling.
In this study, we evaluate the ICL performance of SSMs, focusing on Mamba, against Transformer models across various tasks.
arXiv Detail & Related papers (2024-02-06T18:56:35Z) - Mamba: Linear-Time Sequence Modeling with Selective State Spaces [31.985243136674146]
Foundation models are almost universally based on the Transformer architecture and its core attention module.
We identify that a key weakness of such models is their inability to perform content-based reasoning.
We integrate these selective SSMs into a simplified end-to-end neural network architecture without attention or even blocks (Mamba)
As a general sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio, and genomics.
arXiv Detail & Related papers (2023-12-01T18:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.