SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap
- URL: http://arxiv.org/abs/2404.11335v1
- Date: Wed, 17 Apr 2024 12:53:45 GMT
- Title: SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap
- Authors: Vladimir Somers, Victor Joos, Anthony Cioppa, Silvio Giancola, Seyed Abolfazl Ghasemzadeh, Floriane Magera, Baptiste Standaert, Amir Mohammad Mansourian, Xin Zhou, Shohreh Kasaei, Bernard Ghanem, Alexandre Alahi, Marc Van Droogenbroeck, Christophe De Vleeschouwer,
- Abstract summary: We formalize the task of Game State Reconstruction and introduce SoccerNet-GSR, a novel Game State Reconstruction dataset focusing on football videos.
SoccerNet-GSR is composed of 200 video sequences of 30 seconds, annotated with 9.37 million line points for pitch localization and camera calibration.
Our experiments show that GSR is a challenging novel task, which opens the field for future research.
- Score: 102.5232204867158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tracking and identifying athletes on the pitch holds a central role in collecting essential insights from the game, such as estimating the total distance covered by players or understanding team tactics. This tracking and identification process is crucial for reconstructing the game state, defined by the athletes' positions and identities on a 2D top-view of the pitch, (i.e. a minimap). However, reconstructing the game state from videos captured by a single camera is challenging. It requires understanding the position of the athletes and the viewpoint of the camera to localize and identify players within the field. In this work, we formalize the task of Game State Reconstruction and introduce SoccerNet-GSR, a novel Game State Reconstruction dataset focusing on football videos. SoccerNet-GSR is composed of 200 video sequences of 30 seconds, annotated with 9.37 million line points for pitch localization and camera calibration, as well as over 2.36 million athlete positions on the pitch with their respective role, team, and jersey number. Furthermore, we introduce GS-HOTA, a novel metric to evaluate game state reconstruction methods. Finally, we propose and release an end-to-end baseline for game state reconstruction, bootstrapping the research on this task. Our experiments show that GSR is a challenging novel task, which opens the field for future research. Our dataset and codebase are publicly available at https://github.com/SoccerNet/sn-gamestate.
Related papers
- SoccerNet 2024 Challenges Results [152.8534707514927]
SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team.
The challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding.
This year, the challenges encompass four vision-based tasks.
arXiv Detail & Related papers (2024-09-16T14:12:22Z) - SoccerNet 2023 Challenges Results [165.5977813812761]
SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team.
For this third edition, the challenges were composed of seven vision-based tasks split into three main themes.
arXiv Detail & Related papers (2023-09-12T07:03:30Z) - Monocular 3D Human Pose Estimation for Sports Broadcasts using Partial
Sports Field Registration [0.0]
We combine advances in 2D human pose estimation and camera calibration via partial sports field registration to demonstrate an avenue for collecting valid large-scale kinematic datasets.
We generate a synthetic dataset of more than 10k images in Unreal Engine 5 with different viewpoints, running styles, and body types.
arXiv Detail & Related papers (2023-04-10T07:41:44Z) - SoccerNet 2022 Challenges Results [167.6158475931228]
SoccerNet 2022 challenges were the second annual video understanding challenges organized by the SoccerNet team.
In 2022, the challenges were composed of 6 vision-based tasks.
Compared to last year's challenges, tasks (1-2) had their evaluation metrics redefined to consider tighter temporal accuracies, and tasks (3-6) were novel, including their underlying data and annotations.
arXiv Detail & Related papers (2022-10-05T16:12:50Z) - SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos [62.686484228479095]
We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
arXiv Detail & Related papers (2022-04-14T12:22:12Z) - SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of
Broadcast Soccer Videos [71.72665910128975]
SoccerNet-v2 is a novel large-scale corpus of manual annotations for the SoccerNet video dataset.
We release around 300k annotations within SoccerNet's 500 untrimmed broadcast soccer videos.
We extend current tasks in the realm of soccer to include action spotting, camera shot segmentation with boundary detection.
arXiv Detail & Related papers (2020-11-26T16:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.