SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos
- URL: http://arxiv.org/abs/2204.06918v1
- Date: Thu, 14 Apr 2022 12:22:12 GMT
- Title: SoccerNet-Tracking: Multiple Object Tracking Dataset and Benchmark in
Soccer Videos
- Authors: Anthony Cioppa, Silvio Giancola, Adrien Deliege, Le Kang, Xin Zhou,
Zhiyu Cheng, Bernard Ghanem, Marc Van Droogenbroeck
- Abstract summary: We propose a novel dataset for multiple object tracking composed of 200 sequences of 30s each.
The dataset is fully annotated with bounding boxes and tracklet IDs.
Our analysis shows that multiple player, referee and ball tracking in soccer videos is far from being solved.
- Score: 62.686484228479095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tracking objects in soccer videos is extremely important to gather both
player and team statistics, whether it is to estimate the total distance run,
the ball possession or the team formation. Video processing can help automating
the extraction of those information, without the need of any invasive sensor,
hence applicable to any team on any stadium. Yet, the availability of datasets
to train learnable models and benchmarks to evaluate methods on a common
testbed is very limited. In this work, we propose a novel dataset for multiple
object tracking composed of 200 sequences of 30s each, representative of
challenging soccer scenarios, and a complete 45-minutes half-time for long-term
tracking. The dataset is fully annotated with bounding boxes and tracklet IDs,
enabling the training of MOT baselines in the soccer domain and a full
benchmarking of those methods on our segregated challenge sets. Our analysis
shows that multiple player, referee and ball tracking in soccer videos is far
from being solved, with several improvement required in case of fast motion or
in scenarios of severe occlusion.
Related papers
- TeamTrack: A Dataset for Multi-Sport Multi-Object Tracking in Full-pitch Videos [11.35998213546475]
Multi-object tracking (MOT) is a critical and challenging task in computer vision.
We introduce TeamTrack, a pioneering benchmark dataset specifically designed for MOT in sports.
TeamTrack is an extensive collection of full-pitch video data from various sports, including soccer, basketball, and handball.
arXiv Detail & Related papers (2024-04-22T04:33:40Z) - Tracking Anything in High Quality [63.63653185865726]
HQTrack is a framework for High Quality Tracking anything in videos.
It consists of a video multi-object segmenter (VMOS) and a mask refiner (MR)
arXiv Detail & Related papers (2023-07-26T06:19:46Z) - DIVOTrack: A Novel Dataset and Baseline Method for Cross-View
Multi-Object Tracking in DIVerse Open Scenes [74.64897845999677]
We introduce a new cross-view multi-object tracking dataset for DIVerse Open scenes with dense tracking pedestrians.
Our DIVOTrack has fifteen distinct scenarios and 953 cross-view tracks, surpassing all cross-view multi-object tracking datasets currently available.
Furthermore, we provide a novel baseline cross-view tracking method with a unified joint detection and cross-view tracking framework named CrossMOT.
arXiv Detail & Related papers (2023-02-15T14:10:42Z) - Graph-Based Multi-Camera Soccer Player Tracker [1.6244541005112743]
The paper presents a multi-camera tracking method intended for tracking soccer players in long shot video recordings from multiple calibrated cameras installed around the playing field.
The large distance to the camera makes it difficult to visually distinguish individual players, which adversely affects the performance of traditional solutions.
Our method focuses on individual player dynamics and interactions between neighborhood players to improve tracking performance.
arXiv Detail & Related papers (2022-11-03T20:01:48Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - SoccerNet-v2: A Dataset and Benchmarks for Holistic Understanding of
Broadcast Soccer Videos [71.72665910128975]
SoccerNet-v2 is a novel large-scale corpus of manual annotations for the SoccerNet video dataset.
We release around 300k annotations within SoccerNet's 500 untrimmed broadcast soccer videos.
We extend current tasks in the realm of soccer to include action spotting, camera shot segmentation with boundary detection.
arXiv Detail & Related papers (2020-11-26T16:10:16Z) - Self-Supervised Small Soccer Player Detection and Tracking [8.851964372308801]
State-of-the-art tracking algorithms achieve impressive results in scenarios on which they have been trained for, but they fail in challenging ones such as soccer games.
This is frequently due to the player small relative size and the similar appearance among players of the same team.
We propose a self-supervised pipeline which is able to detect and track low-resolution soccer players under different recording conditions without any need of ground-truth data.
arXiv Detail & Related papers (2020-11-20T10:57:18Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
Tracking Any Object dataset consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average.
We ask annotators to label objects that move at any point in the video, and give names to them post factum.
Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets.
arXiv Detail & Related papers (2020-05-20T21:07:28Z) - TTNet: Real-time temporal and spatial video analysis of table tennis [5.156484100374058]
We present a neural network aimed at real-time processing of high-resolution table tennis videos.
This approach gives core information for reasoning score updates by an auto-referee system.
We publish a multi-task dataset OpenTTGames with videos of table tennis games in 120 fps labeled with events.
arXiv Detail & Related papers (2020-04-21T11:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.