SLAIM: Robust Dense Neural SLAM for Online Tracking and Mapping
- URL: http://arxiv.org/abs/2404.11419v1
- Date: Wed, 17 Apr 2024 14:23:28 GMT
- Title: SLAIM: Robust Dense Neural SLAM for Online Tracking and Mapping
- Authors: Vincent Cartillier, Grant Schindler, Irfan Essa,
- Abstract summary: We propose a novel coarse-to-fine tracking model tailored for Neural Radiance Field SLAM (NeRF-SLAM)
Existing NeRF-SLAM systems consistently exhibit inferior tracking performance compared to traditional SLAM algorithms.
We implement both local and global bundle-adjustment to produce a robust (coarse-to-fine) and accurate (KL regularizer) SLAM solution.
- Score: 15.63276368052395
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present SLAIM - Simultaneous Localization and Implicit Mapping. We propose a novel coarse-to-fine tracking model tailored for Neural Radiance Field SLAM (NeRF-SLAM) to achieve state-of-the-art tracking performance. Notably, existing NeRF-SLAM systems consistently exhibit inferior tracking performance compared to traditional SLAM algorithms. NeRF-SLAM methods solve camera tracking via image alignment and photometric bundle-adjustment. Such optimization processes are difficult to optimize due to the narrow basin of attraction of the optimization loss in image space (local minima) and the lack of initial correspondences. We mitigate these limitations by implementing a Gaussian pyramid filter on top of NeRF, facilitating a coarse-to-fine tracking optimization strategy. Furthermore, NeRF systems encounter challenges in converging to the right geometry with limited input views. While prior approaches use a Signed-Distance Function (SDF)-based NeRF and directly supervise SDF values by approximating ground truth SDF through depth measurements, this often results in suboptimal geometry. In contrast, our method employs a volume density representation and introduces a novel KL regularizer on the ray termination distribution, constraining scene geometry to consist of empty space and opaque surfaces. Our solution implements both local and global bundle-adjustment to produce a robust (coarse-to-fine) and accurate (KL regularizer) SLAM solution. We conduct experiments on multiple datasets (ScanNet, TUM, Replica) showing state-of-the-art results in tracking and in reconstruction accuracy.
Related papers
- Generalizable Non-Line-of-Sight Imaging with Learnable Physical Priors [52.195637608631955]
Non-line-of-sight (NLOS) imaging has attracted increasing attention due to its potential applications.
Existing NLOS reconstruction approaches are constrained by the reliance on empirical physical priors.
We introduce a novel learning-based solution, comprising two key designs: Learnable Path Compensation (LPC) and Adaptive Phasor Field (APF)
arXiv Detail & Related papers (2024-09-21T04:39:45Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-aware 3D Gaussian Field [46.8198987091734]
This paper presents an efficient dense RGB-D SLAM system, i.e., CG-SLAM, based on a novel uncertainty-aware 3D Gaussian field.
Experiments on various datasets demonstrate that CG-SLAM achieves superior tracking and mapping performance with a notable tracking speed of up to 15 Hz.
arXiv Detail & Related papers (2024-03-24T11:19:59Z) - High-Fidelity SLAM Using Gaussian Splatting with Rendering-Guided Densification and Regularized Optimization [8.845446246585215]
We propose a dense RGBD SLAM system based on 3D Gaussian Splatting that provides metrically accurate pose tracking and visually realistic reconstruction.
Compared to recent neural and concurrently developed gaussian splatting RGBD SLAM baselines, our method achieves state-of-the-art results on the synthetic dataset Replica and competitive results on the real-world dataset TUM.
arXiv Detail & Related papers (2024-03-19T08:19:53Z) - SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM [5.144010652281121]
We present SGS-SLAM, the first semantic visual SLAM system based on Splatting.
It appearance geometry, and semantic features through multi-channel optimization, addressing the oversmoothing limitations of neural implicit SLAM systems.
It delivers state-of-the-art performance in camera pose estimation, map reconstruction, precise semantic segmentation, and object-level geometric accuracy.
arXiv Detail & Related papers (2024-02-05T18:03:53Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - NICER-SLAM: Neural Implicit Scene Encoding for RGB SLAM [111.83168930989503]
NICER-SLAM is a dense RGB SLAM system that simultaneously optimize for camera poses and a hierarchical neural implicit map representation.
We show strong performance in dense mapping, tracking, and novel view synthesis, even competitive with recent RGB-D SLAM systems.
arXiv Detail & Related papers (2023-02-07T17:06:34Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.