Fidelity decay and error accumulation in quantum volume circuits
- URL: http://arxiv.org/abs/2404.11444v2
- Date: Fri, 7 Jun 2024 16:06:56 GMT
- Title: Fidelity decay and error accumulation in quantum volume circuits
- Authors: Nadir Samos Sáenz de Buruaga, Rafał Bistroń, Marcin Rudziński, Rodrigo Miguel Chinita Pereira, Karol Życzkowski, Pedro Ribeiro,
- Abstract summary: fidelity decays exponentially with both circuit depth and the number of qubits raised to an architecture-dependent power.
We establish a robust linear relationship between fidelity and the heavy output frequency used in Quantum Volume tests to benchmark quantum processors.
- Score: 0.3562485774739681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a comprehensive analysis of fidelity decay and error accumulation in faulty quantum circuit models. Our work devises an analytical bound for the average fidelity between desired and faulty output states, accounting for errors that may arise during the implementation of two-qubit gates and multi-qubit permutations. It is shown that fidelity decays exponentially with both circuit depth and the number of qubits raised to an architecture-dependent power, and determine the decay rates as a function of the two types of errors. Furthermore, we establish a robust linear relationship between fidelity and the heavy output frequency used in Quantum Volume tests to benchmark quantum processors, under the considered errors protocol. These findings pave the way for predicting the behavior of fidelity in the presence of specific errors and offer insights into the best strategies for increasing Quantum Volume.
Related papers
- Error budget of parametric resonance entangling gate with a tunable coupler [0.0]
We analyze the experimental error budget of parametric resonance gates in a tunable coupler architecture.
Incoherent errors, mainly arising from qubit relaxation and dephasing due to white noise, limit the fidelity of the two-qubit gates.
Leakage to noncomputational states is the second largest contributor to the two-qubit gates infidelity.
arXiv Detail & Related papers (2024-02-06T18:46:27Z) - Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips [11.364693110852738]
We report the experimental realization of robust quantum gates in superconducting quantum circuits.
Our work provides a versatile toolbox for achieving noise-resilient complex quantum circuits.
arXiv Detail & Related papers (2024-01-03T16:12:35Z) - Repeated Purification versus Concatenated Error Correction in Fault
Tolerant Quantum Networks [3.52359746858894]
Successful entanglement swapping is error-prone.
The occurrence of quantum errors can be using purification and error correction.
We compare the two options: repeated purification and iterationsd error correction.
arXiv Detail & Related papers (2023-02-27T14:10:35Z) - Virtual quantum error detection [0.17999333451993949]
We propose a protocol called virtual quantum error detection (VQED)
VQED virtually allows for evaluating computation results corresponding to post-selected quantum states obtained through quantum error detection.
For some simple error models, the results obtained using VQED are robust against the noise that occurred during the operation of VQED.
arXiv Detail & Related papers (2023-02-06T08:52:50Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.